Files
concrete/compilers/concrete-compiler/compiler/lib/Runtime/context.cpp
2024-05-14 15:08:34 +02:00

181 lines
6.1 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete/blob/main/LICENSE.txt
// for license information.
#include "concretelang/Runtime/context.h"
#include "concretelang/Common/Error.h"
#include "concretelang/Common/Keysets.h"
#include <assert.h>
#include <stdio.h>
namespace mlir {
namespace concretelang {
FFT::FFT(size_t polynomial_size)
: fft(nullptr), polynomial_size(polynomial_size) {
fft = (struct Fft *)aligned_alloc(CONCRETE_FFT_ALIGN, CONCRETE_FFT_SIZE);
concrete_cpu_construct_concrete_fft(fft, polynomial_size);
}
FFT::FFT(FFT &&other) : fft(other.fft), polynomial_size(other.polynomial_size) {
other.fft = nullptr;
}
FFT::~FFT() {
if (fft != nullptr) {
concrete_cpu_destroy_concrete_fft(fft);
free(fft);
}
}
RuntimeContext::RuntimeContext(ServerKeyset serverKeyset)
: serverKeyset(serverKeyset) {
// Initialize for each bootstrap key the fourier one
for (size_t i = 0; i < serverKeyset.lweBootstrapKeys.size(); i++) {
auto fdbsk = convert_to_fourier_domain(serverKeyset.lweBootstrapKeys[i]);
// Store the fourier_bootstrap_key in the context
fourier_bootstrap_keys.push_back(fdbsk.second);
ffts.push_back(std::move(fdbsk.first));
}
#ifdef CONCRETELANG_CUDA_SUPPORT
assert(cudaGetDeviceCount(&num_devices) == cudaSuccess);
bsk_gpu.resize(num_devices);
ksk_gpu.resize(num_devices);
for (int i = 0; i < num_devices; ++i) {
bsk_gpu[i].resize(serverKeyset.lweBootstrapKeys.size(), nullptr);
ksk_gpu[i].resize(serverKeyset.lweKeyswitchKeys.size(), nullptr);
bsk_gpu_mutex.push_back(std::make_unique<std::mutex>());
ksk_gpu_mutex.push_back(std::make_unique<std::mutex>());
}
#endif
}
std::pair<FFT, std::shared_ptr<std::vector<std::complex<double>>>>
RuntimeContext::convert_to_fourier_domain(LweBootstrapKey &bsk) {
auto info = bsk.getInfo().asReader();
size_t decomposition_level_count = info.getParams().getLevelCount();
size_t decomposition_base_log = info.getParams().getBaseLog();
size_t glwe_dimension = info.getParams().getGlweDimension();
size_t polynomial_size = info.getParams().getPolynomialSize();
size_t input_lwe_dimension = info.getParams().getInputLweDimension();
// Create the FFT
FFT fft(polynomial_size);
// Allocate scratch for key conversion
size_t scratch_size;
size_t scratch_align;
concrete_cpu_bootstrap_key_convert_u64_to_fourier_scratch(
&scratch_size, &scratch_align, fft.fft);
auto scratch = (uint8_t *)aligned_alloc(scratch_align, scratch_size);
// Allocate the fourier_bootstrap_key
auto &bsk_buffer = bsk.getBuffer();
auto fourier_data = std::make_shared<std::vector<std::complex<double>>>();
fourier_data->resize(bsk_buffer.size() / 2);
auto bsk_data = bsk_buffer.data();
// Convert bootstrap_key to the fourier domain
concrete_cpu_bootstrap_key_convert_u64_to_fourier(
bsk_data, fourier_data->data(), decomposition_level_count,
decomposition_base_log, glwe_dimension, polynomial_size,
input_lwe_dimension, fft.fft, scratch, scratch_size);
free(scratch);
return std::pair<FFT, std::shared_ptr<std::vector<std::complex<double>>>>(
std::move(fft), fourier_data);
}
} // namespace concretelang
} // namespace mlir
#ifdef CONCRETELANG_DATAFLOW_EXECUTION_ENABLED
#include "concretelang/Runtime/key_manager.hpp"
// Register the HPX actions for retrieving the evaluation keys from
// the master node (must be in global namespace)
HPX_PLAIN_ACTION(mlir::concretelang::dfr::getKsk, _dfr_get_ksk_action)
HPX_PLAIN_ACTION(mlir::concretelang::dfr::getBsk, _dfr_get_bsk_action)
HPX_PLAIN_ACTION(mlir::concretelang::dfr::getPKsk, _dfr_get_pksk_action)
namespace mlir {
namespace concretelang {
const uint64_t *DistributedRuntimeContext::keyswitch_key_buffer(size_t keyId) {
if (dfr::_dfr_is_root_node())
return RuntimeContext::keyswitch_key_buffer(keyId);
std::lock_guard<std::mutex> guard(cm_guard);
if (ksks.find(keyId) == ksks.end()) {
_dfr_get_ksk_action getKskAction;
dfr::KeyWrapper<LweKeyswitchKey> kskw =
getKskAction(hpx::find_root_locality(), keyId);
ksks.insert(std::pair<size_t, LweKeyswitchKey>(keyId, kskw.keys[0]));
}
auto it = ksks.find(keyId);
assert(it != ksks.end());
return it->second.getBuffer().data();
}
void DistributedRuntimeContext::getBSKonNode(size_t keyId) {
assert(fbks.find(keyId) == fbks.end());
assert(dffts.find(keyId) == dffts.end());
_dfr_get_bsk_action getBskAction;
dfr::KeyWrapper<LweBootstrapKey> bskw =
getBskAction(hpx::find_root_locality(), keyId);
auto fdbsk = convert_to_fourier_domain(bskw.keys[0]);
fbks.insert(
std::pair<size_t, std::shared_ptr<std::vector<std::complex<double>>>>(
keyId, fdbsk.second));
dffts.insert(std::pair<size_t, FFT>(keyId, std::move(fdbsk.first)));
}
const std::complex<double> *
DistributedRuntimeContext::fourier_bootstrap_key_buffer(size_t keyId) {
if (dfr::_dfr_is_root_node())
return RuntimeContext::fourier_bootstrap_key_buffer(keyId);
std::lock_guard<std::mutex> guard(cm_guard);
if (fbks.find(keyId) == fbks.end())
getBSKonNode(keyId);
auto it = fbks.find(keyId);
assert(it != fbks.end());
return it->second->data();
}
const uint64_t *
DistributedRuntimeContext::fp_keyswitch_key_buffer(size_t keyId) {
if (dfr::_dfr_is_root_node())
return RuntimeContext::fp_keyswitch_key_buffer(keyId);
std::lock_guard<std::mutex> guard(cm_guard);
if (ksks.find(keyId) == ksks.end()) {
_dfr_get_pksk_action getPKskAction;
dfr::KeyWrapper<PackingKeyswitchKey> pkskw =
getPKskAction(hpx::find_root_locality(), keyId);
pksks.insert(std::pair<size_t, PackingKeyswitchKey>(keyId, pkskw.keys[0]));
}
auto it = pksks.find(keyId);
assert(it != pksks.end());
return it->second.getRawPtr();
}
const struct Fft *DistributedRuntimeContext::fft(size_t keyId) {
if (dfr::_dfr_is_root_node())
return RuntimeContext::fft(keyId);
std::lock_guard<std::mutex> guard(cm_guard);
if (dffts.find(keyId) == dffts.end())
getBSKonNode(keyId);
auto it = dffts.find(keyId);
assert(it != dffts.end());
return it->second.fft;
}
} // namespace concretelang
} // namespace mlir
#endif