Files
concrete/docs/dev/api/concrete.fhe.tracing.tracer.md
Benoit Chevallier-Mames 2424352dbf docs(compiler): update apidocs
2024-04-15 09:37:48 +02:00

20 KiB

module concrete.fhe.tracing.tracer

Declaration of Tracer class.


class Tracer

Tracer class, to create computation graphs from python functions.

method __init__

__init__(computation: Node, input_tracers: List[ForwardRef('Tracer')])

property T

Trace numpy.ndarray.T.


property ndim

Trace numpy.ndarray.ndim.


property shape

Trace numpy.ndarray.shape.


property size

Trace numpy.ndarray.size.


method astype

astype(
    dtype: Union[dtype[Any], NoneType, type[Any], _SupportsDType[dtype[Any]], str, tuple[Any, int], tuple[Any, Union[SupportsIndex, Sequence[SupportsIndex]]], list[Any], _DTypeDict, tuple[Any, Any], Type[ForwardRef('ScalarAnnotation')]]
)  Tracer

Trace numpy.ndarray.astype(dtype).


method clip

clip(minimum: Any, maximum: Any)  Tracer

Trace numpy.ndarray.clip().


method dot

dot(other: Any)  Tracer

Trace numpy.ndarray.dot().


method flatten

flatten()  Tracer

Trace numpy.ndarray.flatten().


method reshape

reshape(*newshape: Union[Any, Tuple[Any, ]])  Tracer

Trace numpy.ndarray.reshape(newshape).


method round

round(decimals: int = 0)  Tracer

Trace numpy.ndarray.round().


method sanitize

sanitize(value: Any)  Any

Try to create a tracer from a value.

Args: value (Any): value to use

Returns: Any: resulting tracer


method trace

trace(
    function: Callable,
    parameters: Dict[str, ValueDescription],
    is_direct: bool = False,
    name: str = 'main'
)  Graph

Trace function and create the Graph that represents it.

Args: function (Callable): function to trace

parameters (Dict[str, ValueDescription]): parameters of function to trace e.g. parameter x is an EncryptedScalar holding a 7-bit UnsignedInteger

is_direct (bool, default = False): whether the tracing is done on actual parameters or placeholders

name (str, default = "main"): the name of the function being traced

Returns: Graph: computation graph corresponding to function


method transpose

transpose(axes: Optional[Tuple[int, ]] = None)  Tracer

Trace numpy.ndarray.transpose().


class Annotation

Base annotation for direct definition.

method __init__

__init__(computation: Node, input_tracers: List[ForwardRef('Tracer')])

property T

Trace numpy.ndarray.T.


property ndim

Trace numpy.ndarray.ndim.


property shape

Trace numpy.ndarray.shape.


property size

Trace numpy.ndarray.size.


method astype

astype(
    dtype: Union[dtype[Any], NoneType, type[Any], _SupportsDType[dtype[Any]], str, tuple[Any, int], tuple[Any, Union[SupportsIndex, Sequence[SupportsIndex]]], list[Any], _DTypeDict, tuple[Any, Any], Type[ForwardRef('ScalarAnnotation')]]
)  Tracer

Trace numpy.ndarray.astype(dtype).


method clip

clip(minimum: Any, maximum: Any)  Tracer

Trace numpy.ndarray.clip().


method dot

dot(other: Any)  Tracer

Trace numpy.ndarray.dot().


method flatten

flatten()  Tracer

Trace numpy.ndarray.flatten().


method reshape

reshape(*newshape: Union[Any, Tuple[Any, ]])  Tracer

Trace numpy.ndarray.reshape(newshape).


method round

round(decimals: int = 0)  Tracer

Trace numpy.ndarray.round().


method sanitize

sanitize(value: Any)  Any

Try to create a tracer from a value.

Args: value (Any): value to use

Returns: Any: resulting tracer


method trace

trace(
    function: Callable,
    parameters: Dict[str, ValueDescription],
    is_direct: bool = False,
    name: str = 'main'
)  Graph

Trace function and create the Graph that represents it.

Args: function (Callable): function to trace

parameters (Dict[str, ValueDescription]): parameters of function to trace e.g. parameter x is an EncryptedScalar holding a 7-bit UnsignedInteger

is_direct (bool, default = False): whether the tracing is done on actual parameters or placeholders

name (str, default = "main"): the name of the function being traced

Returns: Graph: computation graph corresponding to function


method transpose

transpose(axes: Optional[Tuple[int, ]] = None)  Tracer

Trace numpy.ndarray.transpose().


class ScalarAnnotation

Base scalar annotation for direct definition.

method __init__

__init__(computation: Node, input_tracers: List[ForwardRef('Tracer')])

property T

Trace numpy.ndarray.T.


property ndim

Trace numpy.ndarray.ndim.


property shape

Trace numpy.ndarray.shape.


property size

Trace numpy.ndarray.size.


method astype

astype(
    dtype: Union[dtype[Any], NoneType, type[Any], _SupportsDType[dtype[Any]], str, tuple[Any, int], tuple[Any, Union[SupportsIndex, Sequence[SupportsIndex]]], list[Any], _DTypeDict, tuple[Any, Any], Type[ForwardRef('ScalarAnnotation')]]
)  Tracer

Trace numpy.ndarray.astype(dtype).


method clip

clip(minimum: Any, maximum: Any)  Tracer

Trace numpy.ndarray.clip().


method dot

dot(other: Any)  Tracer

Trace numpy.ndarray.dot().


method flatten

flatten()  Tracer

Trace numpy.ndarray.flatten().


method reshape

reshape(*newshape: Union[Any, Tuple[Any, ]])  Tracer

Trace numpy.ndarray.reshape(newshape).


method round

round(decimals: int = 0)  Tracer

Trace numpy.ndarray.round().


method sanitize

sanitize(value: Any)  Any

Try to create a tracer from a value.

Args: value (Any): value to use

Returns: Any: resulting tracer


method trace

trace(
    function: Callable,
    parameters: Dict[str, ValueDescription],
    is_direct: bool = False,
    name: str = 'main'
)  Graph

Trace function and create the Graph that represents it.

Args: function (Callable): function to trace

parameters (Dict[str, ValueDescription]): parameters of function to trace e.g. parameter x is an EncryptedScalar holding a 7-bit UnsignedInteger

is_direct (bool, default = False): whether the tracing is done on actual parameters or placeholders

name (str, default = "main"): the name of the function being traced

Returns: Graph: computation graph corresponding to function


method transpose

transpose(axes: Optional[Tuple[int, ]] = None)  Tracer

Trace numpy.ndarray.transpose().


class TensorAnnotation

Base tensor annotation for direct definition.

method __init__

__init__(computation: Node, input_tracers: List[ForwardRef('Tracer')])

property T

Trace numpy.ndarray.T.


property ndim

Trace numpy.ndarray.ndim.


property shape

Trace numpy.ndarray.shape.


property size

Trace numpy.ndarray.size.


method astype

astype(
    dtype: Union[dtype[Any], NoneType, type[Any], _SupportsDType[dtype[Any]], str, tuple[Any, int], tuple[Any, Union[SupportsIndex, Sequence[SupportsIndex]]], list[Any], _DTypeDict, tuple[Any, Any], Type[ForwardRef('ScalarAnnotation')]]
)  Tracer

Trace numpy.ndarray.astype(dtype).


method clip

clip(minimum: Any, maximum: Any)  Tracer

Trace numpy.ndarray.clip().


method dot

dot(other: Any)  Tracer

Trace numpy.ndarray.dot().


method flatten

flatten()  Tracer

Trace numpy.ndarray.flatten().


method reshape

reshape(*newshape: Union[Any, Tuple[Any, ]])  Tracer

Trace numpy.ndarray.reshape(newshape).


method round

round(decimals: int = 0)  Tracer

Trace numpy.ndarray.round().


method sanitize

sanitize(value: Any)  Any

Try to create a tracer from a value.

Args: value (Any): value to use

Returns: Any: resulting tracer


method trace

trace(
    function: Callable,
    parameters: Dict[str, ValueDescription],
    is_direct: bool = False,
    name: str = 'main'
)  Graph

Trace function and create the Graph that represents it.

Args: function (Callable): function to trace

parameters (Dict[str, ValueDescription]): parameters of function to trace e.g. parameter x is an EncryptedScalar holding a 7-bit UnsignedInteger

is_direct (bool, default = False): whether the tracing is done on actual parameters or placeholders

name (str, default = "main"): the name of the function being traced

Returns: Graph: computation graph corresponding to function


method transpose

transpose(axes: Optional[Tuple[int, ]] = None)  Tracer

Trace numpy.ndarray.transpose().