Files
concrete/compiler/lib/Conversion/ConcreteToBConcrete/ConcreteToBConcrete.cpp
Andi Drebes 73fd6c5fe7 refactor(compiler): FHE to TFHE: Use OpConversionPattern for dialect conversion
Use `OpConversionPattern` instead of `OpRewritePattern` for operation
conversion during dialect conversion. This makes explicit and in-place
type conversions unnecessary, since `OpConversionPattern` already
properly converts operand types and provides them to the rewrite rule
through an operation adaptor.

The main contributions of this commit are the two class templates
`TypeConvertingReinstantiationPattern` and
`GenericOneToOneOpConversionPattern`.

The former allows for the definition of a simple replacement rule that
re-instantiates an operation after the types of its operands have been
converted. This is especially useful for type-polymorphic operations
during dialect conversion.

The latter allows for the definition of patterns, where one operation
needs to be replaced with a different operation after conversion of
its operands.

The default implementations for the class templates provide
conversions rules for operations that have a generic builder method
that takes the desired return type(s), the operands and (optionally) a
set of attributes. How attributes are discarded during a conversion
(either by omitting the builder argument or by passing an empty set of
attributes) can be defined through specialization of
`ReinstantiationAttributeDismissalStrategy`.

Custom replacement rules that deviate from the scheme above should be
implemented by specializing
`TypeConvertingReinstantiationPattern::matchAndRewrite()` and
`GenericOneToOneOpConversionPattern::matchAndRewrite()`.
2023-02-01 14:27:10 +01:00

1044 lines
42 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include <algorithm>
#include <iostream>
#include <iterator>
#include <mlir/Dialect/Affine/IR/AffineOps.h>
#include <mlir/Dialect/Bufferization/IR/Bufferization.h>
#include <mlir/Dialect/Func/IR/FuncOps.h>
#include <mlir/Dialect/LLVMIR/LLVMDialect.h>
#include <mlir/Dialect/Linalg/IR/Linalg.h>
#include <mlir/Dialect/SCF/IR/SCF.h>
#include <mlir/Dialect/Tensor/IR/Tensor.h>
#include <mlir/IR/AffineExpr.h>
#include <mlir/IR/AffineMap.h>
#include <mlir/IR/BuiltinAttributes.h>
#include <mlir/IR/BuiltinTypes.h>
#include <mlir/IR/OpDefinition.h>
#include <mlir/Support/LLVM.h>
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "concretelang/Conversion/Passes.h"
#include "concretelang/Conversion/Utils/FuncConstOpConversion.h"
#include "concretelang/Conversion/Utils/GenericOpTypeConversionPattern.h"
#include "concretelang/Conversion/Utils/RegionOpTypeConverterPattern.h"
#include "concretelang/Conversion/Utils/TensorOpTypeConversion.h"
#include "concretelang/Dialect/BConcrete/IR/BConcreteDialect.h"
#include "concretelang/Dialect/BConcrete/IR/BConcreteOps.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteDialect.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteOps.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteTypes.h"
#include "concretelang/Dialect/RT/IR/RTOps.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Function.h"
namespace Concrete = ::mlir::concretelang::Concrete;
namespace BConcrete = ::mlir::concretelang::BConcrete;
namespace {
struct ConcreteToBConcretePass
: public ConcreteToBConcreteBase<ConcreteToBConcretePass> {
void runOnOperation() final;
};
} // namespace
/// ConcreteToBConcreteTypeConverter is a TypeConverter that transform
/// `Concrete.lwe_ciphertext<dimension,p>` to `tensor<dimension+1, i64>>`
/// `tensor<...xConcrete.lwe_ciphertext<dimension,p>>` to
/// `tensor<...xdimension+1, i64>>`
class ConcreteToBConcreteTypeConverter : public mlir::TypeConverter {
public:
ConcreteToBConcreteTypeConverter() {
addConversion([](mlir::Type type) { return type; });
addConversion([&](mlir::concretelang::Concrete::PlaintextType type) {
return mlir::IntegerType::get(type.getContext(), 64);
});
addConversion([&](mlir::concretelang::Concrete::CleartextType type) {
return mlir::IntegerType::get(type.getContext(), 64);
});
addConversion([&](mlir::concretelang::Concrete::LweCiphertextType type) {
assert(type.getDimension() != -1);
llvm::SmallVector<int64_t, 2> shape;
shape.push_back(type.getDimension() + 1);
return mlir::RankedTensorType::get(
shape, mlir::IntegerType::get(type.getContext(), 64));
});
addConversion([&](mlir::concretelang::Concrete::GlweCiphertextType type) {
assert(type.getGlweDimension() != -1);
assert(type.getPolynomialSize() != -1);
return mlir::RankedTensorType::get(
{type.getPolynomialSize() * (type.getGlweDimension() + 1)},
mlir::IntegerType::get(type.getContext(), 64));
});
addConversion([&](mlir::RankedTensorType type) {
auto lwe = type.getElementType()
.dyn_cast_or_null<
mlir::concretelang::Concrete::LweCiphertextType>();
if (lwe == nullptr) {
return (mlir::Type)(type);
}
assert(lwe.getDimension() != -1);
mlir::SmallVector<int64_t> newShape;
newShape.reserve(type.getShape().size() + 1);
newShape.append(type.getShape().begin(), type.getShape().end());
newShape.push_back(lwe.getDimension() + 1);
mlir::Type r = mlir::RankedTensorType::get(
newShape, mlir::IntegerType::get(type.getContext(), 64));
return r;
});
addConversion([&](mlir::concretelang::RT::FutureType type) {
return mlir::concretelang::RT::FutureType::get(
this->convertType(type.dyn_cast<mlir::concretelang::RT::FutureType>()
.getElementType()));
});
addConversion([&](mlir::concretelang::RT::PointerType type) {
return mlir::concretelang::RT::PointerType::get(
this->convertType(type.dyn_cast<mlir::concretelang::RT::PointerType>()
.getElementType()));
});
}
};
template <typename ZeroOp>
struct ZeroOpPattern : public mlir::OpRewritePattern<ZeroOp> {
ZeroOpPattern(::mlir::MLIRContext *context, mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<ZeroOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(ZeroOp zeroOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = zeroOp.getType();
auto newResultTy = converter.convertType(resultTy);
auto generateBody = [&](mlir::OpBuilder &nestedBuilder,
mlir::Location nestedLoc,
mlir::ValueRange blockArgs) {
// %c0 = 0 : i64
auto cstOp = nestedBuilder.create<mlir::arith::ConstantOp>(
nestedLoc, nestedBuilder.getI64IntegerAttr(0));
// tensor.yield %z : !FHE.eint<p>
nestedBuilder.create<mlir::tensor::YieldOp>(nestedLoc, cstOp.getResult());
};
// tensor.generate
rewriter.replaceOpWithNewOp<mlir::tensor::GenerateOp>(
zeroOp, newResultTy, mlir::ValueRange{}, generateBody);
return ::mlir::success();
};
};
template <typename ConcreteOp, typename BConcreteOp>
struct LowToBConcrete : public mlir::OpRewritePattern<ConcreteOp> {
LowToBConcrete(::mlir::MLIRContext *context, mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<ConcreteOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(ConcreteOp concreteOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::TypeRange resultTyRange = concreteOp->getResultTypes();
llvm::ArrayRef<::mlir::NamedAttribute> attributes =
concreteOp.getOperation()->getAttrs();
mlir::Operation *bConcreteOp;
bConcreteOp = rewriter.replaceOpWithNewOp<BConcreteOp>(
concreteOp, resultTyRange, concreteOp.getOperation()->getOperands(),
attributes);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, bConcreteOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct LowerKeySwitch : public mlir::OpRewritePattern<
mlir::concretelang::Concrete::KeySwitchLweOp> {
LowerKeySwitch(::mlir::MLIRContext *context, mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::concretelang::Concrete::KeySwitchLweOp>(
context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::concretelang::Concrete::KeySwitchLweOp ksOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
// construct attributes for in/out dimensions
mlir::concretelang::Concrete::LweCiphertextType outType = ksOp.getType();
auto outDimAttr = rewriter.getI32IntegerAttr(outType.getDimension());
auto inputType = converter.convertType(ksOp.ciphertext().getType())
.cast<mlir::RankedTensorType>();
auto inputDimension = inputType.getShape().back() - 1;
mlir::IntegerAttr inputDimAttr = rewriter.getI32IntegerAttr(inputDimension);
mlir::Operation *bKeySwitchOp = rewriter.replaceOpWithNewOp<
mlir::concretelang::BConcrete::KeySwitchLweTensorOp>(
ksOp, outType, ksOp.ciphertext(), ksOp.levelAttr(), ksOp.baseLogAttr(),
inputDimAttr, outDimAttr);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, bKeySwitchOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct LowerBatchedKeySwitch
: public mlir::OpRewritePattern<
mlir::concretelang::Concrete::BatchedKeySwitchLweOp> {
LowerBatchedKeySwitch(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<
mlir::concretelang::Concrete::BatchedKeySwitchLweOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::concretelang::Concrete::BatchedKeySwitchLweOp bksOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::concretelang::Concrete::LweCiphertextType outType =
bksOp.getType()
.cast<mlir::TensorType>()
.getElementType()
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
auto outDimAttr = rewriter.getI32IntegerAttr(outType.getDimension());
auto inputType =
bksOp.ciphertexts()
.getType()
.cast<mlir::TensorType>()
.getElementType()
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
mlir::IntegerAttr inputDimAttr =
rewriter.getI32IntegerAttr(inputType.getDimension());
mlir::Operation *bBatchedKeySwitchOp = rewriter.replaceOpWithNewOp<
mlir::concretelang::BConcrete::BatchedKeySwitchLweTensorOp>(
bksOp, bksOp.getType(), bksOp.ciphertexts(), bksOp.levelAttr(),
bksOp.baseLogAttr(), inputDimAttr, outDimAttr);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, bBatchedKeySwitchOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct LowerBootstrap : public mlir::OpRewritePattern<
mlir::concretelang::Concrete::BootstrapLweOp> {
LowerBootstrap(::mlir::MLIRContext *context, mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::concretelang::Concrete::BootstrapLweOp>(
context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::concretelang::Concrete::BootstrapLweOp bsOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::concretelang::Concrete::LweCiphertextType outType = bsOp.getType();
auto inputType = converter.convertType(bsOp.input_ciphertext().getType())
.cast<mlir::RankedTensorType>();
auto inputDimension = inputType.getShape().back() - 1;
mlir::IntegerAttr inputDimAttr = rewriter.getI32IntegerAttr(inputDimension);
auto outputPrecisionAttr = rewriter.getI32IntegerAttr(outType.getP());
mlir::Operation *bBootstrapOp = rewriter.replaceOpWithNewOp<
mlir::concretelang::BConcrete::BootstrapLweTensorOp>(
bsOp, outType, bsOp.input_ciphertext(), bsOp.lookup_table(),
inputDimAttr, bsOp.polySizeAttr(), bsOp.levelAttr(), bsOp.baseLogAttr(),
bsOp.glweDimensionAttr(), outputPrecisionAttr);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, bBootstrapOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct LowerBatchedBootstrap
: public mlir::OpRewritePattern<
mlir::concretelang::Concrete::BatchedBootstrapLweOp> {
LowerBatchedBootstrap(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<
mlir::concretelang::Concrete::BatchedBootstrapLweOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::concretelang::Concrete::BatchedBootstrapLweOp bbsOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::concretelang::Concrete::LweCiphertextType outType =
bbsOp.getType()
.cast<mlir::TensorType>()
.getElementType()
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
auto inputType =
bbsOp.input_ciphertexts()
.getType()
.cast<mlir::TensorType>()
.getElementType()
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
auto inputDimAttr = rewriter.getI32IntegerAttr(inputType.getDimension());
auto outputPrecisionAttr = rewriter.getI32IntegerAttr(outType.getP());
mlir::Operation *bBatchedBootstrapOp = rewriter.replaceOpWithNewOp<
mlir::concretelang::BConcrete::BatchedBootstrapLweTensorOp>(
bbsOp, bbsOp.getType(), bbsOp.input_ciphertexts(), bbsOp.lookup_table(),
inputDimAttr, bbsOp.polySizeAttr(), bbsOp.levelAttr(),
bbsOp.baseLogAttr(), bbsOp.glweDimensionAttr(), outputPrecisionAttr);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, bBatchedBootstrapOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct AddPlaintextLweCiphertextOpPattern
: public mlir::OpRewritePattern<Concrete::AddPlaintextLweCiphertextOp> {
AddPlaintextLweCiphertextOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<Concrete::AddPlaintextLweCiphertextOp>(
context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(Concrete::AddPlaintextLweCiphertextOp concreteOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::concretelang::Concrete::LweCiphertextType resultTy =
((mlir::Type)concreteOp->getResult(0).getType())
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
auto newResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
llvm::ArrayRef<::mlir::NamedAttribute> attributes =
concreteOp.getOperation()->getAttrs();
mlir::Operation *bConcreteOp;
bConcreteOp =
rewriter.replaceOpWithNewOp<BConcrete::AddPlaintextLweTensorOp>(
concreteOp, newResultTy,
mlir::ValueRange{concreteOp.lhs(), concreteOp.rhs()}, attributes);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, bConcreteOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct MulCleartextLweCiphertextOpPattern
: public mlir::OpRewritePattern<Concrete::MulCleartextLweCiphertextOp> {
MulCleartextLweCiphertextOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<Concrete::MulCleartextLweCiphertextOp>(
context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(Concrete::MulCleartextLweCiphertextOp concreteOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::concretelang::Concrete::LweCiphertextType resultTy =
((mlir::Type)concreteOp->getResult(0).getType())
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
auto newResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
llvm::ArrayRef<::mlir::NamedAttribute> attributes =
concreteOp.getOperation()->getAttrs();
mlir::Operation *bConcreteOp;
bConcreteOp =
rewriter.replaceOpWithNewOp<BConcrete::MulCleartextLweTensorOp>(
concreteOp, newResultTy,
mlir::ValueRange{concreteOp.lhs(), concreteOp.rhs()}, attributes);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, bConcreteOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct ExtractSliceOpPattern
: public mlir::OpRewritePattern<mlir::tensor::ExtractSliceOp> {
ExtractSliceOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::ExtractSliceOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::ExtractSliceOp extractSliceOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = extractSliceOp.result().getType();
auto newResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
// add 0 to the static_offsets
mlir::SmallVector<mlir::Attribute> staticOffsets;
staticOffsets.append(extractSliceOp.static_offsets().begin(),
extractSliceOp.static_offsets().end());
staticOffsets.push_back(rewriter.getI64IntegerAttr(0));
// add the lweSize to the sizes
mlir::SmallVector<mlir::Attribute> staticSizes;
staticSizes.append(extractSliceOp.static_sizes().begin(),
extractSliceOp.static_sizes().end());
staticSizes.push_back(rewriter.getI64IntegerAttr(
newResultTy.getDimSize(newResultTy.getRank() - 1)));
// add 1 to the strides
mlir::SmallVector<mlir::Attribute> staticStrides;
staticStrides.append(extractSliceOp.static_strides().begin(),
extractSliceOp.static_strides().end());
staticStrides.push_back(rewriter.getI64IntegerAttr(1));
// replace tensor.extract_slice to the new one
mlir::tensor::ExtractSliceOp extractOp =
rewriter.replaceOpWithNewOp<mlir::tensor::ExtractSliceOp>(
extractSliceOp, newResultTy, extractSliceOp.source(),
extractSliceOp.offsets(), extractSliceOp.sizes(),
extractSliceOp.strides(), rewriter.getArrayAttr(staticOffsets),
rewriter.getArrayAttr(staticSizes),
rewriter.getArrayAttr(staticStrides));
mlir::concretelang::convertOperandAndResultTypes(
rewriter, extractOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
// TODO: since they are a bug on lowering extract_slice with rank reduction we
// add a linalg.tensor_collapse_shape after the extract_slice without rank
// reduction. See
// https://github.com/zama-ai/concrete-compiler-internal/issues/396.
struct ExtractOpPattern
: public mlir::OpRewritePattern<mlir::tensor::ExtractOp> {
ExtractOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::ExtractOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::ExtractOp extractOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto lweResultTy =
extractOp.result()
.getType()
.dyn_cast_or_null<
mlir::concretelang::Concrete::LweCiphertextType>();
if (lweResultTy == nullptr) {
return mlir::failure();
}
auto newResultTy =
converter.convertType(lweResultTy).cast<mlir::RankedTensorType>();
auto rankOfResult = extractOp.indices().size() + 1;
// [min..., 0] for static_offsets ()
mlir::SmallVector<mlir::Attribute> staticOffsets(
rankOfResult,
rewriter.getI64IntegerAttr(std::numeric_limits<int64_t>::min()));
staticOffsets[staticOffsets.size() - 1] = rewriter.getI64IntegerAttr(0);
// [1..., lweDimension+1] for static_sizes or
// [1..., nbBlock, lweDimension+1]
mlir::SmallVector<mlir::Attribute> staticSizes(
rankOfResult, rewriter.getI64IntegerAttr(1));
staticSizes[staticSizes.size() - 1] = rewriter.getI64IntegerAttr(
newResultTy.getDimSize(newResultTy.getRank() - 1));
// [1...] for static_strides
mlir::SmallVector<mlir::Attribute> staticStrides(
rankOfResult, rewriter.getI64IntegerAttr(1));
// replace tensor.extract_slice to the new one
mlir::SmallVector<int64_t> extractedSliceShape(rankOfResult, 1);
extractedSliceShape[extractedSliceShape.size() - 1] =
newResultTy.getDimSize(0);
auto extractedSliceType =
mlir::RankedTensorType::get(extractedSliceShape, rewriter.getI64Type());
auto extractedSlice = rewriter.create<mlir::tensor::ExtractSliceOp>(
extractOp.getLoc(), extractedSliceType, extractOp.tensor(),
extractOp.indices(), mlir::SmallVector<mlir::Value>{},
mlir::SmallVector<mlir::Value>{}, rewriter.getArrayAttr(staticOffsets),
rewriter.getArrayAttr(staticSizes),
rewriter.getArrayAttr(staticStrides));
mlir::concretelang::convertOperandAndResultTypes(
rewriter, extractedSlice, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
mlir::ReassociationIndices reassociation;
for (int64_t i = 0; i < extractedSliceType.getRank(); i++) {
reassociation.push_back(i);
}
mlir::SmallVector<mlir::ReassociationIndices> reassocs{reassociation};
mlir::tensor::CollapseShapeOp collapseOp =
rewriter.replaceOpWithNewOp<mlir::tensor::CollapseShapeOp>(
extractOp, newResultTy, extractedSlice, reassocs);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, collapseOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct InsertSliceOpPattern
: public mlir::OpRewritePattern<mlir::tensor::InsertSliceOp> {
InsertSliceOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::InsertSliceOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::InsertSliceOp insertSliceOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = insertSliceOp.result().getType();
auto lweResultTy =
resultTy.cast<mlir::RankedTensorType>()
.getElementType()
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
if (lweResultTy == nullptr) {
return mlir::failure();
}
auto newResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
// add 0 to static_offsets
mlir::SmallVector<mlir::Attribute> staticOffsets;
staticOffsets.append(insertSliceOp.static_offsets().begin(),
insertSliceOp.static_offsets().end());
staticOffsets.push_back(rewriter.getI64IntegerAttr(0));
// add lweDimension+1 to static_sizes
mlir::SmallVector<mlir::Attribute> staticSizes;
staticSizes.append(insertSliceOp.static_sizes().begin(),
insertSliceOp.static_sizes().end());
staticSizes.push_back(rewriter.getI64IntegerAttr(
newResultTy.getDimSize(newResultTy.getRank() - 1)));
// add 1 to the strides
mlir::SmallVector<mlir::Attribute> staticStrides;
staticStrides.append(insertSliceOp.static_strides().begin(),
insertSliceOp.static_strides().end());
staticStrides.push_back(rewriter.getI64IntegerAttr(1));
// replace tensor.insert_slice with the new one
auto newOp = rewriter.replaceOpWithNewOp<mlir::tensor::InsertSliceOp>(
insertSliceOp, newResultTy, insertSliceOp.source(),
insertSliceOp.dest(), insertSliceOp.offsets(), insertSliceOp.sizes(),
insertSliceOp.strides(), rewriter.getArrayAttr(staticOffsets),
rewriter.getArrayAttr(staticSizes),
rewriter.getArrayAttr(staticStrides));
mlir::concretelang::convertOperandAndResultTypes(
rewriter, newOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
struct InsertOpPattern : public mlir::OpRewritePattern<mlir::tensor::InsertOp> {
InsertOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::InsertOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::InsertOp insertOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy =
insertOp.result().getType().dyn_cast_or_null<mlir::RankedTensorType>();
auto lweResultTy = resultTy.getElementType()
.dyn_cast_or_null<Concrete::LweCiphertextType>();
if (lweResultTy == nullptr) {
return mlir::failure();
};
mlir::RankedTensorType newResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
// add zeros to static_offsets
mlir::SmallVector<mlir::OpFoldResult> offsets;
offsets.append(insertOp.indices().begin(), insertOp.indices().end());
offsets.push_back(rewriter.getIndexAttr(0));
// Inserting a smaller tensor into a (potentially) bigger one. Set
// dimensions for all leading dimensions of the target tensor not
// present in the source to 1.
mlir::SmallVector<mlir::OpFoldResult> sizes(insertOp.indices().size(),
rewriter.getI64IntegerAttr(1));
// Add size for the bufferized source element
sizes.push_back(rewriter.getI64IntegerAttr(
newResultTy.getDimSize(newResultTy.getRank() - 1)));
// Set stride of all dimensions to 1
mlir::SmallVector<mlir::OpFoldResult> strides(
newResultTy.getRank(), rewriter.getI64IntegerAttr(1));
// replace tensor.insert_slice with the new one
mlir::tensor::InsertSliceOp insertSliceOp =
rewriter.replaceOpWithNewOp<mlir::tensor::InsertSliceOp>(
insertOp, insertOp.getOperand(0), insertOp.dest(), offsets, sizes,
strides);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, insertSliceOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
/// FromElementsOpPatterns transform each tensor.from_elements that operates on
/// Concrete.lwe_ciphertext
///
/// refs: check_tests/Conversion/ConcreteToBConcrete/tensor_from_elements.mlir
struct FromElementsOpPattern
: public mlir::OpRewritePattern<mlir::tensor::FromElementsOp> {
FromElementsOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::FromElementsOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::FromElementsOp fromElementsOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = fromElementsOp.result().getType();
if (converter.isLegal(resultTy)) {
return mlir::failure();
}
auto oldTensorResultTy = resultTy.cast<mlir::RankedTensorType>();
auto oldRank = oldTensorResultTy.getRank();
auto newTensorResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
auto newRank = newTensorResultTy.getRank();
auto newShape = newTensorResultTy.getShape();
mlir::Value tensor = rewriter.create<mlir::bufferization::AllocTensorOp>(
fromElementsOp.getLoc(), newTensorResultTy, mlir::ValueRange{});
// sizes are [1, ..., 1, diffShape...]
llvm::SmallVector<mlir::OpFoldResult> sizes(oldRank,
rewriter.getI64IntegerAttr(1));
for (auto i = newRank - oldRank; i > 0; i--) {
sizes.push_back(rewriter.getI64IntegerAttr(*(newShape.end() - i)));
}
// strides are [1, ..., 1]
llvm::SmallVector<mlir::OpFoldResult> oneStrides(
newShape.size(), rewriter.getI64IntegerAttr(1));
// start with offets [0, ..., 0]
llvm::SmallVector<int64_t> currentOffsets(newRank, 0);
// for each elements insert_slice with right offet
for (auto elt : llvm::enumerate(fromElementsOp.elements())) {
// Just create offsets as attributes
llvm::SmallVector<mlir::OpFoldResult, 4> offsets;
offsets.reserve(currentOffsets.size());
std::transform(currentOffsets.begin(), currentOffsets.end(),
std::back_inserter(offsets),
[&](auto v) { return rewriter.getI64IntegerAttr(v); });
mlir::tensor::InsertSliceOp insOp =
rewriter.create<mlir::tensor::InsertSliceOp>(
fromElementsOp.getLoc(),
/* src: */ elt.value(),
/* dst: */ tensor,
/* offs: */ offsets,
/* sizes: */ sizes,
/* strides: */ oneStrides);
mlir::concretelang::convertOperandAndResultTypes(
rewriter, insOp, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
tensor = insOp.getResult();
// Increment the offsets
for (auto i = newRank - 2; i >= 0; i--) {
if (currentOffsets[i] == newShape[i] - 1) {
currentOffsets[i] = 0;
continue;
}
currentOffsets[i]++;
break;
}
}
rewriter.replaceOp(fromElementsOp, tensor);
return ::mlir::success();
};
};
// This template rewrite pattern transforms any instance of
// `ShapeOp` operators that operates on tensor of lwe ciphertext by adding the
// lwe size as a size of the tensor result and by adding a trivial
// reassociation at the end of the reassociations map.
//
// Example:
//
// ```mlir
// %0 = "ShapeOp" %arg0 [reassocations...]
// : tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>> into
// tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>>
// ```
//
// becomes:
//
// ```mlir
// %0 = "ShapeOp" %arg0 [reassociations..., [inRank or outRank]]
// : tensor<...xlweDimesion+1xi64> into
// tensor<...xlweDimesion+1xi64>
// ```
template <typename ShapeOp, typename VecTy, bool inRank>
struct TensorShapeOpPattern : public mlir::OpRewritePattern<ShapeOp> {
TensorShapeOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<ShapeOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(ShapeOp shapeOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = ((mlir::Type)shapeOp.result().getType()).cast<VecTy>();
auto newResultTy =
((mlir::Type)converter.convertType(resultTy)).cast<VecTy>();
auto reassocTy =
((mlir::Type)converter.convertType(
(inRank ? shapeOp.src() : shapeOp.result()).getType()))
.cast<VecTy>();
auto oldReassocs = shapeOp.getReassociationIndices();
mlir::SmallVector<mlir::ReassociationIndices> newReassocs;
newReassocs.append(oldReassocs.begin(), oldReassocs.end());
// add [rank] to reassociations
{
mlir::ReassociationIndices lweAssoc;
lweAssoc.push_back(reassocTy.getRank() - 1);
newReassocs.push_back(lweAssoc);
}
ShapeOp op = rewriter.replaceOpWithNewOp<ShapeOp>(
shapeOp, newResultTy, shapeOp.src(), newReassocs);
// fix operand types
mlir::concretelang::convertOperandAndResultTypes(
rewriter, op, [&](mlir::MLIRContext *, mlir::Type t) {
return converter.convertType(t);
});
return ::mlir::success();
};
};
/// Add the instantiated TensorShapeOpPattern rewrite pattern with the `ShapeOp`
/// to the patterns set and populate the conversion target.
template <typename ShapeOp, typename VecTy, bool inRank>
void insertTensorShapeOpPattern(mlir::MLIRContext &context,
mlir::RewritePatternSet &patterns,
mlir::ConversionTarget &target) {
patterns.insert<TensorShapeOpPattern<ShapeOp, VecTy, inRank>>(&context);
target.addDynamicallyLegalOp<ShapeOp>([&](mlir::Operation *op) {
ConcreteToBConcreteTypeConverter converter;
return converter.isLegal(op->getResultTypes()) &&
converter.isLegal(op->getOperandTypes());
});
}
struct AllocTensorOpPattern
: public mlir::OpRewritePattern<mlir::bufferization::AllocTensorOp> {
AllocTensorOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::bufferization::AllocTensorOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::bufferization::AllocTensorOp allocTensorOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::RankedTensorType resultTy =
allocTensorOp.getType().dyn_cast<mlir::RankedTensorType>();
if (!resultTy || !resultTy.hasStaticShape())
return mlir::failure();
mlir::RankedTensorType newResultTy =
converter.convertType(resultTy).dyn_cast<mlir::RankedTensorType>();
if (resultTy.getShape().size() != newResultTy.getShape().size()) {
rewriter.replaceOpWithNewOp<mlir::bufferization::AllocTensorOp>(
allocTensorOp, newResultTy, mlir::ValueRange{});
}
return ::mlir::success();
};
};
struct ForOpPattern : public mlir::OpRewritePattern<mlir::scf::ForOp> {
ForOpPattern(::mlir::MLIRContext *context, mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::scf::ForOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::scf::ForOp forOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
// TODO: Check if there is a cleaner way to modify the types in
// place through appropriate interfaces or by reconstructing the
// ForOp with the right types.
rewriter.updateRootInPlace(forOp, [&] {
for (mlir::Value initArg : forOp.getInitArgs()) {
mlir::Type convertedType = converter.convertType(initArg.getType());
initArg.setType(convertedType);
}
for (mlir::Value &blockArg : forOp.getBody()->getArguments()) {
mlir::Type convertedType = converter.convertType(blockArg.getType());
blockArg.setType(convertedType);
}
for (mlir::OpResult result : forOp.getResults()) {
mlir::Type convertedType = converter.convertType(result.getType());
result.setType(convertedType);
}
});
return ::mlir::success();
};
};
void ConcreteToBConcretePass::runOnOperation() {
auto op = this->getOperation();
// Then convert ciphertext to tensor or add a dimension to tensor of
// ciphertext and memref of ciphertext
{
mlir::ConversionTarget target(getContext());
ConcreteToBConcreteTypeConverter converter;
mlir::RewritePatternSet patterns(&getContext());
// All BConcrete ops are legal after the conversion
target.addLegalDialect<mlir::concretelang::BConcrete::BConcreteDialect>();
// Add Concrete ops are illegal after the conversion
target.addIllegalDialect<mlir::concretelang::Concrete::ConcreteDialect>();
target.addLegalDialect<mlir::arith::ArithmeticDialect>();
// Add patterns to convert the zero ops to tensor.generate
patterns
.insert<ZeroOpPattern<mlir::concretelang::Concrete::ZeroTensorLWEOp>,
ZeroOpPattern<mlir::concretelang::Concrete::ZeroLWEOp>>(
&getContext());
target.addLegalOp<mlir::tensor::GenerateOp, mlir::tensor::YieldOp>();
// Add patterns to trivialy convert Concrete op to the equivalent
// BConcrete op
patterns.insert<
LowerBootstrap, LowerBatchedBootstrap, LowerKeySwitch,
LowerBatchedKeySwitch,
LowToBConcrete<mlir::concretelang::Concrete::AddLweCiphertextsOp,
mlir::concretelang::BConcrete::AddLweTensorOp>,
AddPlaintextLweCiphertextOpPattern, MulCleartextLweCiphertextOpPattern,
LowToBConcrete<
mlir::concretelang::Concrete::EncodeExpandLutForBootstrapOp,
mlir::concretelang::BConcrete::EncodeExpandLutForBootstrapTensorOp>,
LowToBConcrete<
mlir::concretelang::Concrete::EncodeExpandLutForWopPBSOp,
mlir::concretelang::BConcrete::EncodeExpandLutForWopPBSTensorOp>,
LowToBConcrete<
mlir::concretelang::Concrete::EncodePlaintextWithCrtOp,
mlir::concretelang::BConcrete::EncodePlaintextWithCrtTensorOp>,
LowToBConcrete<mlir::concretelang::Concrete::NegateLweCiphertextOp,
mlir::concretelang::BConcrete::NegateLweTensorOp>,
LowToBConcrete<Concrete::WopPBSLweOp, BConcrete::WopPBSCRTLweTensorOp>>(
&getContext());
// Add patterns to rewrite tensor operators that works on encrypted
// tensors
patterns
.insert<ExtractSliceOpPattern, ExtractOpPattern, InsertSliceOpPattern,
InsertOpPattern, FromElementsOpPattern>(&getContext());
target.addDynamicallyLegalOp<mlir::tensor::ExtractSliceOp,
mlir::tensor::ExtractOp, mlir::scf::YieldOp>(
[&](mlir::Operation *op) {
return converter.isLegal(op->getResultTypes()) &&
converter.isLegal(op->getOperandTypes());
});
patterns.insert<AllocTensorOpPattern>(&getContext());
target.addDynamicallyLegalOp<mlir::tensor::InsertSliceOp,
mlir::tensor::FromElementsOp,
mlir::bufferization::AllocTensorOp>(
[&](mlir::Operation *op) {
return converter.isLegal(op->getResult(0).getType());
});
target.addLegalOp<mlir::memref::CopyOp>();
patterns.insert<ForOpPattern>(&getContext());
// Add patterns to rewrite some of memref ops that was introduced by the
// linalg bufferization of encrypted tensor (first conversion of this
// pass)
insertTensorShapeOpPattern<mlir::memref::ExpandShapeOp, mlir::MemRefType,
false>(getContext(), patterns, target);
insertTensorShapeOpPattern<mlir::tensor::ExpandShapeOp, mlir::TensorType,
false>(getContext(), patterns, target);
insertTensorShapeOpPattern<mlir::memref::CollapseShapeOp, mlir::MemRefType,
true>(getContext(), patterns, target);
insertTensorShapeOpPattern<mlir::tensor::CollapseShapeOp, mlir::TensorType,
true>(getContext(), patterns, target);
target.addDynamicallyLegalOp<
mlir::arith::ConstantOp, mlir::scf::ForOp, mlir::scf::ParallelOp,
mlir::scf::YieldOp, mlir::AffineApplyOp, mlir::memref::SubViewOp,
mlir::memref::LoadOp, mlir::memref::TensorStoreOp>(
[&](mlir::Operation *op) {
return converter.isLegal(op->getResultTypes()) &&
converter.isLegal(op->getOperandTypes());
});
// Add patterns to do the conversion of func
mlir::populateFunctionOpInterfaceTypeConversionPattern<mlir::func::FuncOp>(
patterns, converter);
target.addDynamicallyLegalOp<mlir::func::FuncOp>(
[&](mlir::func::FuncOp funcOp) {
return converter.isSignatureLegal(funcOp.getFunctionType()) &&
converter.isLegal(&funcOp.getBody());
});
target.addDynamicallyLegalOp<mlir::func::ConstantOp>(
[&](mlir::func::ConstantOp op) {
return FunctionConstantOpConversion<
ConcreteToBConcreteTypeConverter>::isLegal(op, converter);
});
patterns
.insert<FunctionConstantOpConversion<ConcreteToBConcreteTypeConverter>>(
&getContext(), converter);
target.addDynamicallyLegalOp<mlir::scf::ForOp>([&](mlir::scf::ForOp forOp) {
return converter.isLegal(forOp.getInitArgs().getTypes()) &&
converter.isLegal(forOp.getResults().getTypes());
});
// Add pattern for return op
target.addDynamicallyLegalOp<mlir::func::ReturnOp>(
[&](mlir::Operation *op) {
return converter.isLegal(op->getResultTypes()) &&
converter.isLegal(op->getOperandTypes());
});
// Conversion of RT Dialect Ops
patterns.add<
mlir::concretelang::GenericTypeConverterPattern<mlir::func::ReturnOp>,
mlir::concretelang::GenericTypeConverterPattern<mlir::scf::YieldOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::MakeReadyFutureOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::AwaitFutureOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::CreateAsyncTaskOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::BuildReturnPtrPlaceholderOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::DerefWorkFunctionArgumentPtrPlaceholderOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::DerefReturnPtrPlaceholderOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::WorkFunctionReturnOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::RegisterTaskWorkFunctionOp>>(&getContext(),
converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::MakeReadyFutureOp>(target, converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::AwaitFutureOp>(target, converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::CreateAsyncTaskOp>(target, converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::BuildReturnPtrPlaceholderOp>(target, converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::DerefWorkFunctionArgumentPtrPlaceholderOp>(
target, converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::DerefReturnPtrPlaceholderOp>(target, converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::WorkFunctionReturnOp>(target, converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::RegisterTaskWorkFunctionOp>(target, converter);
// Apply conversion
if (mlir::applyPartialConversion(op, target, std::move(patterns))
.failed()) {
this->signalPassFailure();
}
}
}
namespace mlir {
namespace concretelang {
std::unique_ptr<OperationPass<ModuleOp>>
createConvertConcreteToBConcretePass() {
return std::make_unique<ConcreteToBConcretePass>();
}
} // namespace concretelang
} // namespace mlir