Files
concrete/tests/numpy/test_tracing_calls.py
Benoit Chevallier-Mames 5448669e83 chore: split test_tracing
closes #913
2021-11-17 10:10:05 +01:00

303 lines
9.7 KiB
Python

"""Test file for numpy tracing"""
from copy import deepcopy
import numpy
import pytest
from concrete.common.data_types.floats import Float
from concrete.common.data_types.integers import Integer
from concrete.common.representation import intermediate as ir
from concrete.common.values import EncryptedScalar, EncryptedTensor
from concrete.numpy import tracing
OPERATIONS_TO_TEST = [ir.Add, ir.Sub, ir.Mul]
# Functions from tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC, whose output
# is a float64, whatever the input type
LIST_OF_UFUNC_WHOSE_OUTPUT_IS_FLOAT64 = set(
[
numpy.arccos,
numpy.arccosh,
numpy.arcsin,
numpy.arcsinh,
numpy.arctan,
numpy.arctanh,
numpy.cbrt,
numpy.ceil,
numpy.cos,
numpy.cosh,
numpy.deg2rad,
numpy.degrees,
numpy.exp,
numpy.exp2,
numpy.expm1,
numpy.fabs,
numpy.floor,
numpy.log,
numpy.log10,
numpy.log1p,
numpy.log2,
numpy.rad2deg,
numpy.radians,
numpy.rint,
numpy.sin,
numpy.sinh,
numpy.spacing,
numpy.sqrt,
numpy.tan,
numpy.tanh,
numpy.trunc,
]
)
# Functions from tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC, whose output
# is a boolean, whatever the input type
LIST_OF_UFUNC_WHOSE_OUTPUT_IS_BOOL = set(
[
numpy.isfinite,
numpy.isinf,
numpy.isnan,
numpy.signbit,
numpy.logical_not,
]
)
@pytest.mark.parametrize(
"inputs,expected_output_node",
[
pytest.param(
{"x": EncryptedScalar(Integer(7, is_signed=False))},
ir.GenericFunction,
),
pytest.param(
{"x": EncryptedScalar(Integer(32, is_signed=True))},
ir.GenericFunction,
),
pytest.param(
{"x": EncryptedScalar(Integer(64, is_signed=True))},
ir.GenericFunction,
),
pytest.param(
{"x": EncryptedScalar(Integer(128, is_signed=True))},
ir.GenericFunction,
marks=pytest.mark.xfail(strict=True, raises=NotImplementedError),
),
pytest.param(
{"x": EncryptedScalar(Float(64))},
ir.GenericFunction,
),
],
)
@pytest.mark.parametrize(
"function_to_trace_def",
[f for f in tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC if f.nin == 1],
)
def test_trace_numpy_supported_unary_ufuncs(inputs, expected_output_node, function_to_trace_def):
"""Function to trace supported numpy ufuncs"""
# We really need a lambda (because numpy functions are not playing
# nice with inspect.signature), but pylint and flake8 are not happy
# with it
# pylint: disable=cell-var-from-loop
function_to_trace = lambda x: function_to_trace_def(x) # noqa: E731
# pylint: enable=cell-var-from-loop
op_graph = tracing.trace_numpy_function(function_to_trace, inputs)
assert len(op_graph.output_nodes) == 1
assert isinstance(op_graph.output_nodes[0], expected_output_node)
assert len(op_graph.output_nodes[0].outputs) == 1
if function_to_trace_def in LIST_OF_UFUNC_WHOSE_OUTPUT_IS_FLOAT64:
assert op_graph.output_nodes[0].outputs[0] == EncryptedScalar(Float(64))
elif function_to_trace_def in LIST_OF_UFUNC_WHOSE_OUTPUT_IS_BOOL:
# Boolean function
assert op_graph.output_nodes[0].outputs[0] == EncryptedScalar(Integer(8, is_signed=False))
else:
# Function keeping more or less input type
input_node_type = inputs["x"]
expected_output_node_type = deepcopy(input_node_type)
expected_output_node_type.dtype.bit_width = max(
expected_output_node_type.dtype.bit_width, 32
)
assert op_graph.output_nodes[0].outputs[0] == expected_output_node_type
@pytest.mark.parametrize("np_function", tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC)
def test_nptracer_get_tracing_func_for_np_functions(np_function):
"""Test NPTracer get_tracing_func_for_np_function"""
expected_tracing_func = tracing.NPTracer.UFUNC_ROUTING[np_function]
assert tracing.NPTracer.get_tracing_func_for_np_function(np_function) == expected_tracing_func
def subtest_tracing_calls(
function_to_trace,
input_value_input_and_expected_output_tuples,
):
"""Test memory function managed by GenericFunction node of the form numpy.something"""
for input_value, input_, expected_output in input_value_input_and_expected_output_tuples:
op_graph = tracing.trace_numpy_function(function_to_trace, {"x": input_value})
output_node = op_graph.output_nodes[0]
node_results = op_graph.evaluate({0: input_})
evaluated_output = node_results[output_node]
assert isinstance(evaluated_output, type(expected_output)), type(evaluated_output)
assert numpy.array_equal(expected_output, evaluated_output)
@pytest.mark.parametrize(
"function_to_trace,input_value_input_and_expected_output_tuples",
[
(
lambda x: numpy.transpose(x),
[
(
EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)),
numpy.arange(4).reshape(2, 2),
numpy.array([[0, 2], [1, 3]]),
),
(
EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)),
numpy.arange(4, 8).reshape(2, 2),
numpy.array([[4, 6], [5, 7]]),
),
(
EncryptedTensor(Integer(6, is_signed=False), shape=()),
numpy.int64(42),
numpy.int64(42),
),
],
),
(
lambda x: numpy.transpose(x) + 42,
[
(
EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)),
numpy.arange(15).reshape(3, 5),
numpy.arange(42, 57).reshape(3, 5).transpose(),
),
(
EncryptedTensor(Integer(6, is_signed=False), shape=()),
numpy.int64(42),
numpy.int64(84),
),
],
),
(
lambda x: numpy.ravel(x),
[
(
EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)),
numpy.arange(4),
numpy.array([0, 1, 2, 3]),
),
(
EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)),
numpy.arange(4).reshape(2, 2),
numpy.array([0, 1, 2, 3]),
),
(
EncryptedTensor(Integer(6, is_signed=False), shape=()),
numpy.int64(42),
numpy.array([42], dtype=numpy.int64),
),
],
),
(
lambda x: numpy.reshape(x, (5, 3)) + 42,
[
(
EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)),
numpy.arange(15).reshape(3, 5),
numpy.arange(42, 57).reshape(5, 3),
),
],
),
],
)
def test_tracing_numpy_calls(
function_to_trace,
input_value_input_and_expected_output_tuples,
):
"""Test memory function managed by GenericFunction node of the form numpy.something"""
subtest_tracing_calls(function_to_trace, input_value_input_and_expected_output_tuples)
@pytest.mark.parametrize(
"function_to_trace,input_value_input_and_expected_output_tuples",
[
(
lambda x: x.transpose() + 42,
[
(
EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)),
numpy.arange(15).reshape(3, 5),
numpy.arange(42, 57).reshape(3, 5).transpose(),
),
(
EncryptedTensor(Integer(6, is_signed=False), shape=()),
numpy.int64(42),
numpy.int64(84),
),
],
),
(
lambda x: x.ravel(),
[
(
EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)),
numpy.arange(4),
numpy.array([0, 1, 2, 3]),
),
(
EncryptedTensor(Integer(4, is_signed=False), shape=(2, 2)),
numpy.arange(4).reshape(2, 2),
numpy.array([0, 1, 2, 3]),
),
(
EncryptedTensor(Integer(6, is_signed=False), shape=()),
numpy.int64(42),
numpy.array([42], dtype=numpy.int64),
),
],
),
(
lambda x: x.reshape((5, 3)) + 42,
[
(
EncryptedTensor(Integer(32, is_signed=False), shape=(3, 5)),
numpy.arange(15).reshape(3, 5),
numpy.arange(42, 57).reshape(5, 3),
),
],
),
pytest.param(
lambda x: x.reshape((5, 3)),
[
(
EncryptedTensor(Integer(6, is_signed=False), shape=()),
numpy.int64(42),
None,
)
],
marks=pytest.mark.xfail(strict=True, raises=AssertionError),
),
],
)
def test_tracing_ndarray_calls(
function_to_trace,
input_value_input_and_expected_output_tuples,
):
"""Test memory function managed by GenericFunction node of the form ndarray.something"""
subtest_tracing_calls(function_to_trace, input_value_input_and_expected_output_tuples)