mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-10 04:35:03 -05:00
- Scalar types: int, np.uint8 (to extend with other types later), and np.ndarray with shape == () - Tensor types: np.ndarray
182 lines
6.5 KiB
Python
182 lines
6.5 KiB
Python
"""Compiler submodule"""
|
|
from collections.abc import Iterable
|
|
import os
|
|
from typing import List, Union
|
|
|
|
from mlir._mlir_libs._zamalang._compiler import JitCompilerEngine as _JitCompilerEngine
|
|
from mlir._mlir_libs._zamalang._compiler import LambdaArgument as _LambdaArgument
|
|
from mlir._mlir_libs._zamalang._compiler import round_trip as _round_trip
|
|
from mlir._mlir_libs._zamalang._compiler import library as _library
|
|
import numpy as np
|
|
|
|
|
|
def _lookup_runtime_lib() -> str:
|
|
"""Try to find the absolute path to the runtime library.
|
|
|
|
Returns:
|
|
str: absolute path to the runtime library, or empty str if unsuccessful.
|
|
"""
|
|
# Go up to site-packages level
|
|
cwd = os.path.abspath(__file__)
|
|
cwd = os.path.abspath(os.path.join(cwd, os.pardir))
|
|
cwd = os.path.abspath(os.path.join(cwd, os.pardir))
|
|
package_name = "concretefhe_compiler"
|
|
libs_path = os.path.join(cwd, f"{package_name}.libs")
|
|
# Can be because it's not a properly installed package
|
|
if not os.path.exists(libs_path):
|
|
return ""
|
|
runtime_library_paths = [
|
|
filename
|
|
for filename in os.listdir(libs_path)
|
|
if filename.startswith("libZamalangRuntime")
|
|
]
|
|
assert len(runtime_library_paths) == 1, "should be one and only one runtime library"
|
|
return os.path.join(libs_path, runtime_library_paths[0])
|
|
|
|
|
|
def round_trip(mlir_str: str) -> str:
|
|
"""Parse the MLIR input, then return it back.
|
|
|
|
Args:
|
|
mlir_str (str): MLIR code to parse.
|
|
|
|
Raises:
|
|
TypeError: if the argument is not an str.
|
|
|
|
Returns:
|
|
str: parsed MLIR input.
|
|
"""
|
|
if not isinstance(mlir_str, str):
|
|
raise TypeError("input must be an `str`")
|
|
return _round_trip(mlir_str)
|
|
|
|
_MLIR_MODULES_TYPE = 'mlir_modules must be an `iterable` of `str` or a `str'
|
|
|
|
def library(library_path: str, mlir_modules: Union['Iterable[str]', str]) -> str:
|
|
"""Compile the MLIR inputs to a library.
|
|
|
|
Args:
|
|
library_path (str): destination path of the library
|
|
mlir_modules (list[str]|str): code of MLIR modules
|
|
|
|
Raises:
|
|
TypeError: if arguments have incorrect types.
|
|
|
|
Returns:
|
|
str: parsed MLIR input.
|
|
"""
|
|
if not isinstance(library_path, str):
|
|
raise TypeError('library_path must be a `str`')
|
|
if isinstance(mlir_modules, str):
|
|
mlir_modules = [mlir_modules]
|
|
elif isinstance(mlir_modules, list):
|
|
pass
|
|
elif isinstance(mlir_modules, Iterable):
|
|
mlir_modules = list(mlir_modules)
|
|
else:
|
|
mlir_modules = [None]
|
|
raise TypeError(_MLIR_MODULES_TYPE)
|
|
|
|
if not all(isinstance(m, str) for m in mlir_modules):
|
|
raise TypeError(_MLIR_MODULES_TYPE)
|
|
|
|
return _library(library_path, mlir_modules)
|
|
|
|
|
|
def create_execution_argument(value: Union[int, np.ndarray]) -> "_LambdaArgument":
|
|
"""Create an execution argument holding either an int or tensor value.
|
|
|
|
Args:
|
|
value (Union[int, numpy.array]): value of the argument, either an int, or a numpy array
|
|
|
|
Raises:
|
|
TypeError: if the values aren't in the expected range, or using a wrong type
|
|
|
|
Returns:
|
|
_LambdaArgument: lambda argument holding the appropriate value
|
|
"""
|
|
if not isinstance(value, (int, np.ndarray, np.uint8)):
|
|
raise TypeError("value of execution argument must be either int, numpy.array or numpy.uint8")
|
|
if isinstance(value, (int, np.uint8)):
|
|
if not (0 <= value < (2 ** 64 - 1)):
|
|
raise TypeError(
|
|
"single integer must be in the range [0, 2**64 - 1] (uint64)"
|
|
)
|
|
return _LambdaArgument.from_scalar(value)
|
|
else:
|
|
assert isinstance(value, np.ndarray)
|
|
if value.shape == ():
|
|
return _LambdaArgument.from_scalar(value)
|
|
if value.dtype != np.uint8:
|
|
raise TypeError("numpy.array must be of dtype uint8")
|
|
return _LambdaArgument.from_tensor(value.flatten().tolist(), value.shape)
|
|
|
|
|
|
class CompilerEngine:
|
|
def __init__(self, mlir_str: str = None):
|
|
self._engine = _JitCompilerEngine()
|
|
self._lambda = None
|
|
if mlir_str is not None:
|
|
self.compile_fhe(mlir_str)
|
|
|
|
def compile_fhe(
|
|
self, mlir_str: str, func_name: str = "main", runtime_lib_path: str = None,
|
|
unsecure_key_set_cache_path: str = None,
|
|
):
|
|
"""Compile the MLIR input.
|
|
|
|
Args:
|
|
mlir_str (str): MLIR to compile.
|
|
func_name (str): name of the function to set as entrypoint (default: main).
|
|
runtime_lib_path (str): path to the runtime lib (default: None).
|
|
unsecure_key_set_cache_path (str): path to the activate keyset caching (default: None).
|
|
|
|
Raises:
|
|
TypeError: if the argument is not an str.
|
|
"""
|
|
if not isinstance(mlir_str, str):
|
|
raise TypeError("input must be an `str`")
|
|
if runtime_lib_path is None:
|
|
# Set to empty string if not found
|
|
runtime_lib_path = _lookup_runtime_lib()
|
|
else:
|
|
if not isinstance(runtime_lib_path, str):
|
|
raise TypeError(
|
|
"runtime_lib_path must be an str representing the path to the runtime lib"
|
|
)
|
|
unsecure_key_set_cache_path = unsecure_key_set_cache_path or ""
|
|
if not isinstance(unsecure_key_set_cache_path, str):
|
|
raise TypeError(
|
|
"unsecure_key_set_cache_path must be a str"
|
|
)
|
|
self._lambda = self._engine.build_lambda(
|
|
mlir_str, func_name, runtime_lib_path,
|
|
unsecure_key_set_cache_path)
|
|
|
|
def run(self, *args: List[Union[int, np.ndarray]]) -> Union[int, np.ndarray]:
|
|
"""Run the compiled code.
|
|
|
|
Args:
|
|
*args: list of arguments for execution. Each argument can be an int, or a numpy.array
|
|
|
|
Raises:
|
|
TypeError: if execution arguments can't be constructed
|
|
RuntimeError: if the engine has not compiled any code yet
|
|
RuntimeError: if the return type is unknown
|
|
|
|
Returns:
|
|
int or numpy.array: result of execution.
|
|
"""
|
|
if self._lambda is None:
|
|
raise RuntimeError("need to compile an MLIR code first")
|
|
execution_arguments = [create_execution_argument(arg) for arg in args]
|
|
lambda_arg = self._lambda.invoke(execution_arguments)
|
|
if lambda_arg.is_scalar():
|
|
return lambda_arg.get_scalar()
|
|
elif lambda_arg.is_tensor():
|
|
shape = lambda_arg.get_tensor_shape()
|
|
tensor = np.array(lambda_arg.get_tensor_data()).reshape(shape)
|
|
return tensor
|
|
else:
|
|
raise RuntimeError("unknown return type")
|