Files
concrete/tests/common/optimization/test_float_fusing.py
2021-10-06 17:53:52 +02:00

273 lines
8.5 KiB
Python

"""Test file for float subgraph fusing"""
import random
from inspect import signature
import numpy
import pytest
from concrete.common.data_types.integers import Integer
from concrete.common.optimization.topological import fuse_float_operations
from concrete.common.values import EncryptedScalar, EncryptedTensor
from concrete.numpy import tracing
from concrete.numpy.tracing import trace_numpy_function
def no_fuse(x):
"""No fuse"""
return x + 2
def no_fuse_unhandled(x, y):
"""No fuse unhandled"""
x_1 = x + 0.7
y_1 = y + 1.3
intermediate = x_1 + y_1
return intermediate.astype(numpy.int32)
def simple_fuse_not_output(x):
"""Simple fuse not output"""
intermediate = x.astype(numpy.float64)
intermediate = intermediate.astype(numpy.int32)
return intermediate + 2
def simple_fuse_output(x):
"""Simple fuse output"""
return x.astype(numpy.float64).astype(numpy.int32)
def complex_fuse_indirect_input(function, x, y):
"""Complex fuse"""
intermediate = x + y
intermediate = intermediate + 2
intermediate = intermediate.astype(numpy.float32)
intermediate = intermediate.astype(numpy.int32)
x_p_1 = intermediate + 1.5
x_p_2 = intermediate + 2.7
x_p_3 = function(x_p_1 + x_p_2)
return (
x_p_3.astype(numpy.int32),
x_p_2.astype(numpy.int32),
(x_p_2 + 3).astype(numpy.int32),
x_p_3.astype(numpy.int32) + 67,
y,
(y + 4.7).astype(numpy.int32) + 3,
)
def complex_fuse_direct_input(function, x, y):
"""Complex fuse"""
x_p_1 = x + 0.1
x_p_2 = x + 0.2
x_p_3 = function(x_p_1 + x_p_2)
return (
x_p_3.astype(numpy.int32),
x_p_2.astype(numpy.int32),
(x_p_2 + 3).astype(numpy.int32),
x_p_3.astype(numpy.int32) + 67,
y,
(y + 4.7).astype(numpy.int32) + 3,
)
@pytest.mark.parametrize(
"function_to_trace,fused",
[
pytest.param(no_fuse, False, id="no_fuse"),
pytest.param(no_fuse_unhandled, False, id="no_fuse_unhandled"),
pytest.param(simple_fuse_not_output, True, id="no_fuse"),
pytest.param(simple_fuse_output, True, id="no_fuse"),
pytest.param(
lambda x, y: complex_fuse_indirect_input(numpy.rint, x, y),
True,
id="complex_fuse_indirect_input_with_rint",
),
pytest.param(
lambda x, y: complex_fuse_direct_input(numpy.rint, x, y),
True,
id="complex_fuse_direct_input_with_rint",
),
],
)
@pytest.mark.parametrize("input_", [0, 2, 42, 44])
def test_fuse_float_operations(function_to_trace, fused, input_):
"""Test function for fuse_float_operations"""
params_names = signature(function_to_trace).parameters.keys()
op_graph = trace_numpy_function(
function_to_trace,
{param_name: EncryptedScalar(Integer(32, True)) for param_name in params_names},
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
if fused:
assert fused_num_nodes < orig_num_nodes
else:
assert fused_num_nodes == orig_num_nodes
input_ = numpy.int32(input_)
num_params = len(params_names)
inputs = (input_,) * num_params
assert function_to_trace(*inputs) == op_graph(*inputs)
# TODO: #199 To be removed when doing tensor management
def test_tensor_no_fuse():
"""Test case to verify float fusing is only applied on functions on scalars."""
ndim = random.randint(1, 3)
tensor_shape = tuple(random.randint(1, 10) for _ in range(ndim + 1))
def tensor_no_fuse(x):
intermediate = x.astype(numpy.float64)
intermediate = intermediate.astype(numpy.int32)
return intermediate + numpy.ones(tensor_shape)
function_to_trace = tensor_no_fuse
params_names = signature(function_to_trace).parameters.keys()
op_graph = trace_numpy_function(
function_to_trace,
{
param_name: EncryptedTensor(Integer(32, True), shape=tensor_shape)
for param_name in params_names
},
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
assert orig_num_nodes == fused_num_nodes
def subtest_fuse_float_unary_operations_correctness(fun):
"""Test a unary function with fuse_float_operations."""
# Some manipulation to avoid issues with domain of definitions of functions
if fun == numpy.arccosh:
input_list = [1, 2, 42, 44]
super_fun_list = [complex_fuse_direct_input]
elif fun in [numpy.arctanh, numpy.arccos, numpy.arcsin, numpy.arctan]:
input_list = [0, 0.1, 0.2]
super_fun_list = [complex_fuse_direct_input]
else:
input_list = [0, 2, 42, 44]
super_fun_list = [complex_fuse_direct_input, complex_fuse_indirect_input]
for super_fun in super_fun_list:
for input_ in input_list:
def get_function_to_trace():
return lambda x, y: super_fun(fun, x, y)
function_to_trace = get_function_to_trace()
params_names = signature(function_to_trace).parameters.keys()
op_graph = trace_numpy_function(
function_to_trace,
{param_name: EncryptedScalar(Integer(32, True)) for param_name in params_names},
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
assert fused_num_nodes < orig_num_nodes
input_ = numpy.int32(input_)
num_params = len(params_names)
inputs = (input_,) * num_params
assert function_to_trace(*inputs) == op_graph(*inputs)
def subtest_fuse_float_binary_operations_correctness(fun):
"""Test a binary functions with fuse_float_operations, with a constant as a source."""
for i in range(4):
# For bivariate functions: fix one of the inputs
if i == 0:
# With an integer in first position
def get_function_to_trace():
return lambda x, y: fun(3, x + y).astype(numpy.int32)
elif i == 1:
# With a float in first position
def get_function_to_trace():
return lambda x, y: fun(2.3, x + y).astype(numpy.int32)
elif i == 2:
# With an integer in second position
def get_function_to_trace():
return lambda x, y: fun(x + y, 4).astype(numpy.int32)
else:
# With a float in second position
def get_function_to_trace():
return lambda x, y: fun(x + y, 5.7).astype(numpy.int32)
input_list = [0, 2, 42, 44]
for input_ in input_list:
function_to_trace = get_function_to_trace()
params_names = signature(function_to_trace).parameters.keys()
op_graph = trace_numpy_function(
function_to_trace,
{param_name: EncryptedScalar(Integer(32, True)) for param_name in params_names},
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
assert fused_num_nodes < orig_num_nodes
input_ = numpy.int32(input_)
num_params = len(params_names)
inputs = (input_,) * num_params
assert function_to_trace(*inputs) == op_graph(*inputs)
def subtest_fuse_float_binary_operations_dont_support_two_variables(fun):
"""Test a binary function with fuse_float_operations, with no constant as
a source."""
def get_function_to_trace():
return lambda x, y: fun(x, y).astype(numpy.int32)
function_to_trace = get_function_to_trace()
params_names = signature(function_to_trace).parameters.keys()
with pytest.raises(NotImplementedError, match=r"Can't manage binary operator"):
trace_numpy_function(
function_to_trace,
{param_name: EncryptedScalar(Integer(32, True)) for param_name in params_names},
)
@pytest.mark.parametrize("fun", tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC)
def test_ufunc_operations(fun):
"""Test functions which are in tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC."""
if fun.nin == 1:
subtest_fuse_float_unary_operations_correctness(fun)
elif fun.nin == 2:
subtest_fuse_float_binary_operations_correctness(fun)
subtest_fuse_float_binary_operations_dont_support_two_variables(fun)
else:
raise NotImplementedError("Only unary and binary functions are tested for now")