Files
concrete/compilers/concrete-compiler/compiler/lib/Dialect/FHE/Transforms/Boolean.cpp
Andi Drebes c8c969773e Rebase onto llvm-project 465ee9bfb26d with local changes
This commit rebases the compiler onto commit 465ee9bfb26d from
llvm-project with locally maintained patches on top, i.e.:

  * 5d8669d669ee: Fix the element alignment (size) for memrefCopy
  * 4239163ea337: fix: Do not fold the memref.subview if the offset are
                  != 0 and strides != 1
  * 72c5decfcc21: remove github stuff from llvm
  * 8d0ce8f9eca1: Support arbitrary element types in named operations
                  via attributes
  * 94f64805c38c: Copy attributes of scf.for on bufferization and make
                  it an allocation hoisting barrier

Main upstream changes from llvm-project that required modification of
concretecompiler:

  * Switch to C++17
  * Various changes in the interfaces for linalg named operations
  * Transition from `llvm::Optional` to `std::optional`
  * Use of enums instead of string values for iterator types in linalg
  * Changed default naming convention of getter methods in
    ODS-generated operation classes from `some_value()` to
    `getSomeValue()`
  * Renaming of Arithmetic dialect to Arith
  * Refactoring of side effect interfaces (i.e., renaming from
    `NoSideEffect` to `Pure`)
  * Re-design of the data flow analysis framework
  * Refactoring of build targets for Python bindings
  * Refactoring of array attributes with integer values
  * Renaming of `linalg.init_tensor` to `tensor.empty`
  * Emission of `linalg.map` operations in bufferization of the Tensor
    dialect requiring another linalg conversion pass and registration
    of the bufferization op interfaces for linalg operations
  * Refactoring of the one-shot bufferizer
  * Necessity to run the expand-strided-metadata, affine-to-std and
    finalize-memref-to-llvm passes before converson to the LLVM
    dialect
  * Renaming of `BlockAndValueMapping` to `IRMapping`
  * Changes in the build function of `LLVM::CallOp`
  * Refactoring of the construction of `llvm::ArrayRef` and
    `llvm::MutableArrayRef` (direct invocation of constructor instead
    of builder functions for some cases)
  * New naming conventions for generated SSA values requiring rewrite
    of some check tests
  * Refactoring of `mlir::LLVM::lookupOrCreateMallocFn()`
  * Interface changes in generated type parsers
  * New dependencies for to mlir_float16_utils and
    MLIRSparseTensorRuntime for the runtime
  * Overhaul of MLIR-c deleting `mlir-c/Registration.h`
  * Deletion of library MLIRLinalgToSPIRV
  * Deletion of library MLIRLinalgAnalysis
  * Deletion of library MLIRMemRefUtils
  * Deletion of library MLIRQuantTransforms
  * Deletion of library MLIRVectorToROCDL
2023-03-09 17:47:16 +01:00

180 lines
7.4 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include <mlir/Dialect/Arith/IR/Arith.h>
#include <mlir/IR/PatternMatch.h>
#include <mlir/Transforms/GreedyPatternRewriteDriver.h>
#include <concretelang/Dialect/FHE/IR/FHEOps.h>
#include <concretelang/Dialect/FHE/IR/FHETypes.h>
#include <concretelang/Dialect/FHE/Transforms/Boolean/Boolean.h>
#include <concretelang/Support/Constants.h>
namespace mlir {
namespace concretelang {
namespace {
/// Rewrite an `FHE.gen_gate` operation as an LUT operation by composing a
/// single index from the two boolean inputs.
class GenGatePattern
: public mlir::OpRewritePattern<mlir::concretelang::FHE::GenGateOp> {
public:
GenGatePattern(mlir::MLIRContext *context)
: mlir::OpRewritePattern<mlir::concretelang::FHE::GenGateOp>(
context, ::mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
mlir::LogicalResult
matchAndRewrite(mlir::concretelang::FHE::GenGateOp op,
mlir::PatternRewriter &rewriter) const override {
auto eint2 = mlir::concretelang::FHE::EncryptedIntegerType::get(
rewriter.getContext(), 2);
auto left = rewriter
.create<mlir::concretelang::FHE::FromBoolOp>(
op.getLoc(), eint2, op.getLeft())
.getResult();
auto right = rewriter
.create<mlir::concretelang::FHE::FromBoolOp>(
op.getLoc(), eint2, op.getRight())
.getResult();
auto cst_two =
rewriter.create<mlir::arith::ConstantIntOp>(op.getLoc(), 2, 3)
.getResult();
auto leftMulTwo = rewriter
.create<mlir::concretelang::FHE::MulEintIntOp>(
op.getLoc(), left, cst_two)
.getResult();
auto newIndex = rewriter
.create<mlir::concretelang::FHE::AddEintOp>(
op.getLoc(), leftMulTwo, right)
.getResult();
auto lut_result =
rewriter.create<mlir::concretelang::FHE::ApplyLookupTableEintOp>(
op.getLoc(), eint2, newIndex, op.getTruthTable());
rewriter.replaceOpWithNewOp<mlir::concretelang::FHE::ToBoolOp>(
op,
mlir::concretelang::FHE::EncryptedBooleanType::get(
rewriter.getContext()),
lut_result);
return mlir::success();
}
};
/// Rewrite an FHE GateOp (e.g. And/Or) into a GenGate with the given truth
/// table.
template <typename GateOp>
class GeneralizeGatePattern : public mlir::OpRewritePattern<GateOp> {
public:
GeneralizeGatePattern(mlir::MLIRContext *context,
llvm::SmallVector<uint64_t, 4> truth_table_vector)
: mlir::OpRewritePattern<GateOp>(
context, ::mlir::concretelang::DEFAULT_PATTERN_BENEFIT),
truth_table_vector(truth_table_vector) {}
mlir::LogicalResult
matchAndRewrite(GateOp op, mlir::PatternRewriter &rewriter) const override {
auto truth_table_attr = mlir::DenseElementsAttr::get(
mlir::RankedTensorType::get({4}, rewriter.getIntegerType(64)),
{llvm::APInt(1, this->truth_table_vector[0], false),
llvm::APInt(1, this->truth_table_vector[1], false),
llvm::APInt(1, this->truth_table_vector[2], false),
llvm::APInt(1, this->truth_table_vector[3], false)});
auto truth_table =
rewriter.create<mlir::arith::ConstantOp>(op.getLoc(), truth_table_attr);
rewriter.replaceOpWithNewOp<mlir::concretelang::FHE::GenGateOp>(
op, op.getResult().getType(), op.getLeft(), op.getRight(), truth_table);
return mlir::success();
}
private:
llvm::SmallVector<uint64_t, 4> truth_table_vector;
};
/// Rewrite an `FHE.mux` op, into a series of boolean and arithmetic operations
/// mux(cond, c1, c2) => c1 and not cond + c2 and cond
class MuxOpPattern
: public mlir::OpRewritePattern<mlir::concretelang::FHE::MuxOp> {
public:
MuxOpPattern(mlir::MLIRContext *context)
: mlir::OpRewritePattern<mlir::concretelang::FHE::MuxOp>(
context, ::mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
mlir::LogicalResult
matchAndRewrite(mlir::concretelang::FHE::MuxOp op,
mlir::PatternRewriter &rewriter) const override {
auto eint2 = mlir::concretelang::FHE::EncryptedIntegerType::get(
rewriter.getContext(), 2);
auto boolType = mlir::concretelang::FHE::EncryptedBooleanType::get(
rewriter.getContext());
// truth table for c1 and not cond
auto truth_table_attr = mlir::DenseElementsAttr::get(
mlir::RankedTensorType::get({4}, rewriter.getIntegerType(64)),
{llvm::APInt(1, 0, false), llvm::APInt(1, 0, false),
llvm::APInt(1, 1, false), llvm::APInt(1, 0, false)});
auto truth_table =
rewriter.create<mlir::arith::ConstantOp>(op.getLoc(), truth_table_attr);
auto c1AndNotCond =
rewriter
.create<mlir::concretelang::FHE::GenGateOp>(
op.getLoc(), boolType, op.getC1(), op.getCond(), truth_table)
.getResult();
auto c2AndCond = rewriter
.create<mlir::concretelang::FHE::BoolAndOp>(
op.getLoc(), boolType, op.getC2(), op.getCond())
.getResult();
auto c1AndNotCondBool = rewriter
.create<mlir::concretelang::FHE::FromBoolOp>(
op.getLoc(), eint2, c1AndNotCond)
.getResult();
auto c2AndCondBool = rewriter
.create<mlir::concretelang::FHE::FromBoolOp>(
op.getLoc(), eint2, c2AndCond)
.getResult();
auto result = rewriter
.create<mlir::concretelang::FHE::AddEintOp>(
op.getLoc(), c1AndNotCondBool, c2AndCondBool)
.getResult();
rewriter.replaceOpWithNewOp<mlir::concretelang::FHE::ToBoolOp>(op, boolType,
result);
return mlir::success();
}
};
/// Perfoms the transformation of boolean operations
class FHEBooleanTransformPass
: public FHEBooleanTransformBase<FHEBooleanTransformPass> {
public:
void runOnOperation() override {
mlir::Operation *op = getOperation();
mlir::RewritePatternSet patterns(&getContext());
patterns.add<GenGatePattern>(&getContext());
patterns.add<MuxOpPattern>(&getContext());
patterns.add<GeneralizeGatePattern<mlir::concretelang::FHE::BoolAndOp>>(
&getContext(), llvm::SmallVector<uint64_t, 4>({0, 0, 0, 1}));
patterns.add<GeneralizeGatePattern<mlir::concretelang::FHE::BoolNandOp>>(
&getContext(), llvm::SmallVector<uint64_t, 4>({1, 1, 1, 0}));
patterns.add<GeneralizeGatePattern<mlir::concretelang::FHE::BoolOrOp>>(
&getContext(), llvm::SmallVector<uint64_t, 4>({0, 1, 1, 1}));
patterns.add<GeneralizeGatePattern<mlir::concretelang::FHE::BoolXorOp>>(
&getContext(), llvm::SmallVector<uint64_t, 4>({0, 1, 1, 0}));
if (mlir::applyPatternsAndFoldGreedily(op, std::move(patterns)).failed()) {
this->signalPassFailure();
}
}
};
} // end anonymous namespace
std::unique_ptr<mlir::OperationPass<>> createFHEBooleanTransformPass() {
return std::make_unique<FHEBooleanTransformPass>();
}
} // namespace concretelang
} // namespace mlir