mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 03:55:04 -05:00
795 lines
34 KiB
C++
795 lines
34 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include "concretelang/Runtime/wrappers.h"
|
|
#include "concrete-cpu.h"
|
|
#include "concretelang/Common/Error.h"
|
|
#include <assert.h>
|
|
#include <bitset>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <iostream>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <vector>
|
|
|
|
#include "concretelang/ClientLib/CRT.h"
|
|
#include "concretelang/Runtime/wrappers.h"
|
|
|
|
#ifdef CONCRETELANG_CUDA_SUPPORT
|
|
|
|
// CUDA memory utils function /////////////////////////////////////////////////
|
|
|
|
void *memcpy_async_bsk_to_gpu(mlir::concretelang::RuntimeContext *context,
|
|
uint32_t input_lwe_dim, uint32_t poly_size,
|
|
uint32_t level, uint32_t glwe_dim,
|
|
uint32_t gpu_idx, void *stream) {
|
|
return context->get_bsk_gpu(input_lwe_dim, poly_size, level, glwe_dim,
|
|
gpu_idx, stream);
|
|
}
|
|
|
|
void *memcpy_async_ksk_to_gpu(mlir::concretelang::RuntimeContext *context,
|
|
uint32_t level, uint32_t input_lwe_dim,
|
|
uint32_t output_lwe_dim, uint32_t gpu_idx,
|
|
void *stream) {
|
|
return context->get_ksk_gpu(level, input_lwe_dim, output_lwe_dim, gpu_idx,
|
|
stream);
|
|
}
|
|
|
|
void *alloc_and_memcpy_async_to_gpu(uint64_t *buf_ptr, uint64_t buf_offset,
|
|
uint64_t buf_size, uint32_t gpu_idx,
|
|
void *stream) {
|
|
size_t buf_size_ = buf_size * sizeof(uint64_t);
|
|
void *ct_gpu = cuda_malloc_async(buf_size_, (cudaStream_t *)stream, gpu_idx);
|
|
cuda_memcpy_async_to_gpu(ct_gpu, buf_ptr + buf_offset, buf_size_,
|
|
(cudaStream_t *)stream, gpu_idx);
|
|
return ct_gpu;
|
|
}
|
|
|
|
void memcpy_async_to_cpu(uint64_t *buf_ptr, uint64_t buf_offset,
|
|
uint64_t buf_size, void *buf_gpu, uint32_t gpu_idx,
|
|
void *stream) {
|
|
cuda_memcpy_async_to_cpu(buf_ptr + buf_offset, buf_gpu,
|
|
buf_size * sizeof(uint64_t), (cudaStream_t *)stream,
|
|
gpu_idx);
|
|
}
|
|
|
|
void free_from_gpu(void *gpu_ptr, uint32_t gpu_idx = 0) {
|
|
cuda_drop(gpu_ptr, gpu_idx);
|
|
}
|
|
|
|
// Single ciphertext CUDA functions ///////////////////////////////////////////
|
|
|
|
void memref_keyswitch_lwe_cuda_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size, uint64_t out_stride, uint64_t *ct0_allocated,
|
|
uint64_t *ct0_aligned, uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride, uint32_t level, uint32_t base_log,
|
|
uint32_t input_lwe_dim, uint32_t output_lwe_dim,
|
|
mlir::concretelang::RuntimeContext *context) {
|
|
assert(out_stride == 1);
|
|
assert(ct0_stride == 1);
|
|
memref_batched_keyswitch_lwe_cuda_u64(
|
|
// Output 1D memref as 2D memref
|
|
out_allocated, out_aligned, out_offset, 1, out_size, out_size, out_stride,
|
|
// Output 1D memref as 2D memref
|
|
ct0_allocated, ct0_aligned, ct0_offset, 1, ct0_size, ct0_size, ct0_stride,
|
|
// Keyswitch additional arguments
|
|
level, base_log, input_lwe_dim, output_lwe_dim, context);
|
|
}
|
|
|
|
void memref_bootstrap_lwe_cuda_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size, uint64_t out_stride, uint64_t *ct0_allocated,
|
|
uint64_t *ct0_aligned, uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride, uint64_t *tlu_allocated, uint64_t *tlu_aligned,
|
|
uint64_t tlu_offset, uint64_t tlu_size, uint64_t tlu_stride,
|
|
uint32_t input_lwe_dim, uint32_t poly_size, uint32_t level,
|
|
uint32_t base_log, uint32_t glwe_dim, uint32_t precision,
|
|
mlir::concretelang::RuntimeContext *context) {
|
|
memref_batched_bootstrap_lwe_cuda_u64(
|
|
// Output 1D memref as 2D memref
|
|
out_allocated, out_aligned, out_offset, 1, out_size, out_size, out_stride,
|
|
// Input 1D memref as 2D memref
|
|
ct0_allocated, ct0_aligned, ct0_offset, 1, ct0_size, ct0_size, ct0_stride,
|
|
// Table lookup memref
|
|
tlu_allocated, tlu_aligned, tlu_offset, tlu_size, tlu_stride,
|
|
// Bootstrap additional arguments
|
|
input_lwe_dim, poly_size, level, base_log, glwe_dim, precision, context);
|
|
}
|
|
|
|
// Batched CUDA function //////////////////////////////////////////////////////
|
|
|
|
void memref_batched_keyswitch_lwe_cuda_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size0, uint64_t out_size1, uint64_t out_stride0,
|
|
uint64_t out_stride1, uint64_t *ct0_allocated, uint64_t *ct0_aligned,
|
|
uint64_t ct0_offset, uint64_t ct0_size0, uint64_t ct0_size1,
|
|
uint64_t ct0_stride0, uint64_t ct0_stride1, uint32_t level,
|
|
uint32_t base_log, uint32_t input_lwe_dim, uint32_t output_lwe_dim,
|
|
mlir::concretelang::RuntimeContext *context) {
|
|
assert(out_size0 == ct0_size0);
|
|
assert(out_size1 == output_lwe_dim + 1);
|
|
assert(ct0_size1 == input_lwe_dim + 1);
|
|
// TODO: Multi GPU
|
|
uint32_t gpu_idx = 0;
|
|
uint32_t num_samples = out_size0;
|
|
uint64_t ct0_batch_size = ct0_size0 * ct0_size1;
|
|
uint64_t out_batch_size = out_size0 * out_size1;
|
|
|
|
// Create the cuda stream
|
|
// TODO: Should be created by the compiler codegen
|
|
void *stream = cuda_create_stream(gpu_idx);
|
|
// Get the pointer on the keyswitching key on the GPU
|
|
void *ksk_gpu = memcpy_async_ksk_to_gpu(context, level, input_lwe_dim,
|
|
output_lwe_dim, gpu_idx, stream);
|
|
// Move the input and output batch of ciphertexts to the GPU
|
|
// TODO: The allocation should be done by the compiler codegen
|
|
void *ct0_gpu = alloc_and_memcpy_async_to_gpu(
|
|
ct0_aligned, ct0_offset, ct0_batch_size, gpu_idx, (cudaStream_t *)stream);
|
|
void *out_gpu = cuda_malloc_async(out_batch_size * sizeof(uint64_t),
|
|
(cudaStream_t *)stream, gpu_idx);
|
|
// Run the keyswitch kernel on the GPU
|
|
cuda_keyswitch_lwe_ciphertext_vector_64(
|
|
stream, gpu_idx, out_gpu, ct0_gpu, ksk_gpu, input_lwe_dim, output_lwe_dim,
|
|
base_log, level, num_samples);
|
|
// Copy the output batch of ciphertext back to CPU
|
|
memcpy_async_to_cpu(out_aligned, out_offset, out_batch_size, out_gpu, gpu_idx,
|
|
stream);
|
|
cuda_synchronize_device(gpu_idx);
|
|
// free memory that we allocated on gpu
|
|
cuda_drop(ct0_gpu, gpu_idx);
|
|
cuda_drop(out_gpu, gpu_idx);
|
|
cuda_destroy_stream((cudaStream_t *)stream, gpu_idx);
|
|
}
|
|
|
|
void memref_batched_bootstrap_lwe_cuda_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size0, uint64_t out_size1, uint64_t out_stride0,
|
|
uint64_t out_stride1, uint64_t *ct0_allocated, uint64_t *ct0_aligned,
|
|
uint64_t ct0_offset, uint64_t ct0_size0, uint64_t ct0_size1,
|
|
uint64_t ct0_stride0, uint64_t ct0_stride1, uint64_t *tlu_allocated,
|
|
uint64_t *tlu_aligned, uint64_t tlu_offset, uint64_t tlu_size,
|
|
uint64_t tlu_stride, uint32_t input_lwe_dim, uint32_t poly_size,
|
|
uint32_t level, uint32_t base_log, uint32_t glwe_dim, uint32_t precision,
|
|
mlir::concretelang::RuntimeContext *context) {
|
|
assert(out_size0 == ct0_size0);
|
|
assert(out_size1 == glwe_dim * poly_size + 1);
|
|
// TODO: Multi GPU
|
|
uint32_t gpu_idx = 0;
|
|
uint32_t num_samples = out_size0;
|
|
uint64_t ct0_batch_size = ct0_size0 * ct0_size1;
|
|
uint64_t out_batch_size = out_size0 * out_size1;
|
|
int8_t *pbs_buffer = nullptr;
|
|
|
|
// Create the cuda stream
|
|
// TODO: Should be created by the compiler codegen
|
|
void *stream = cuda_create_stream(gpu_idx);
|
|
// Get the pointer on the bootstraping key on the GPU
|
|
void *fbsk_gpu = memcpy_async_bsk_to_gpu(context, input_lwe_dim, poly_size,
|
|
level, glwe_dim, gpu_idx, stream);
|
|
// Move the input and output batch of ciphertext to the GPU
|
|
// TODO: The allocation should be done by the compiler codegen
|
|
void *ct0_gpu = alloc_and_memcpy_async_to_gpu(
|
|
ct0_aligned, ct0_offset, ct0_batch_size, gpu_idx, (cudaStream_t *)stream);
|
|
void *out_gpu = cuda_malloc_async(out_batch_size * sizeof(uint64_t),
|
|
(cudaStream_t *)stream, gpu_idx);
|
|
// Construct the glwe accumulator (on CPU)
|
|
// TODO: Should be done outside of the bootstrap call, compile time if
|
|
// possible. Refactor in progress
|
|
uint64_t glwe_ct_size = poly_size * (glwe_dim + 1);
|
|
uint64_t *glwe_ct = (uint64_t *)malloc(glwe_ct_size * sizeof(uint64_t));
|
|
auto tlu = tlu_aligned + tlu_offset;
|
|
|
|
// Glwe trivial encryption
|
|
for (size_t i = 0; i < poly_size * glwe_dim; i++) {
|
|
glwe_ct[i] = 0;
|
|
}
|
|
for (size_t i = 0; i < poly_size; i++) {
|
|
glwe_ct[poly_size * glwe_dim + i] = tlu[i];
|
|
}
|
|
|
|
// Move the glwe accumulator to the GPU
|
|
void *glwe_ct_gpu = alloc_and_memcpy_async_to_gpu(
|
|
glwe_ct, 0, glwe_ct_size, gpu_idx, (cudaStream_t *)stream);
|
|
|
|
// Move test vector indexes to the GPU, the test vector indexes is set of 0
|
|
uint32_t num_test_vectors = 1, lwe_idx = 0,
|
|
test_vector_idxes_size = num_samples * sizeof(uint64_t);
|
|
void *test_vector_idxes = malloc(test_vector_idxes_size);
|
|
memset(test_vector_idxes, 0, test_vector_idxes_size);
|
|
void *test_vector_idxes_gpu = cuda_malloc_async(
|
|
test_vector_idxes_size, (cudaStream_t *)stream, gpu_idx);
|
|
cuda_memcpy_async_to_gpu(test_vector_idxes_gpu, test_vector_idxes,
|
|
test_vector_idxes_size, (cudaStream_t *)stream,
|
|
gpu_idx);
|
|
// Allocate PBS buffer on GPU
|
|
scratch_cuda_bootstrap_amortized_64(
|
|
stream, gpu_idx, &pbs_buffer, glwe_dim, poly_size, num_samples,
|
|
cuda_get_max_shared_memory(gpu_idx), true);
|
|
// Run the bootstrap kernel on the GPU
|
|
cuda_bootstrap_amortized_lwe_ciphertext_vector_64(
|
|
stream, gpu_idx, out_gpu, glwe_ct_gpu, test_vector_idxes_gpu, ct0_gpu,
|
|
fbsk_gpu, pbs_buffer, input_lwe_dim, glwe_dim, poly_size, base_log, level,
|
|
num_samples, num_test_vectors, lwe_idx,
|
|
cuda_get_max_shared_memory(gpu_idx));
|
|
cleanup_cuda_bootstrap_amortized(stream, gpu_idx, &pbs_buffer);
|
|
// Copy the output batch of ciphertext back to CPU
|
|
memcpy_async_to_cpu(out_aligned, out_offset, out_batch_size, out_gpu, gpu_idx,
|
|
stream);
|
|
// free memory that we allocated on gpu
|
|
cuda_drop_async(ct0_gpu, (cudaStream_t *)stream, gpu_idx);
|
|
cuda_drop_async(out_gpu, (cudaStream_t *)stream, gpu_idx);
|
|
cuda_drop_async(glwe_ct_gpu, (cudaStream_t *)stream, gpu_idx);
|
|
cuda_drop_async(test_vector_idxes_gpu, (cudaStream_t *)stream, gpu_idx);
|
|
cudaStreamSynchronize(*(cudaStream_t *)stream);
|
|
// Free the glwe accumulator (on CPU)
|
|
free(glwe_ct);
|
|
cuda_destroy_stream((cudaStream_t *)stream, gpu_idx);
|
|
}
|
|
|
|
#endif
|
|
|
|
void memref_encode_plaintext_with_crt(
|
|
uint64_t *output_allocated, uint64_t *output_aligned,
|
|
uint64_t output_offset, uint64_t output_size, uint64_t output_stride,
|
|
uint64_t input, uint64_t *mods_allocated, uint64_t *mods_aligned,
|
|
uint64_t mods_offset, uint64_t mods_size, uint64_t mods_stride,
|
|
uint64_t mods_product) {
|
|
|
|
assert(output_stride == 1 && "Runtime: stride not equal to 1, check "
|
|
"memref_encode_plaintext_with_crt");
|
|
|
|
assert(mods_stride == 1 && "Runtime: stride not equal to 1, check "
|
|
"memref_encode_plaintext_with_crt");
|
|
|
|
for (size_t i = 0; i < (size_t)mods_size; ++i) {
|
|
output_aligned[output_offset + i] =
|
|
encode_crt(input, mods_aligned[mods_offset + i], mods_product);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void memref_encode_expand_lut_for_bootstrap(
|
|
uint64_t *output_lut_allocated, uint64_t *output_lut_aligned,
|
|
uint64_t output_lut_offset, uint64_t output_lut_size,
|
|
uint64_t output_lut_stride, uint64_t *input_lut_allocated,
|
|
uint64_t *input_lut_aligned, uint64_t input_lut_offset,
|
|
uint64_t input_lut_size, uint64_t input_lut_stride, uint32_t poly_size,
|
|
uint32_t out_MESSAGE_BITS, bool is_signed) {
|
|
|
|
assert(input_lut_stride == 1 && "Runtime: stride not equal to 1, check "
|
|
"memref_encode_expand_lut_bootstrap");
|
|
|
|
assert(output_lut_stride == 1 && "Runtime: stride not equal to 1, check "
|
|
"memref_encode_expand_lut_bootstrap");
|
|
|
|
size_t mega_case_size = output_lut_size / input_lut_size;
|
|
|
|
assert((mega_case_size % 2) == 0);
|
|
|
|
// When the bootstrap is executed on encrypted signed integers, the lut must
|
|
// be half-rotated. This map takes care about properly indexing into the input
|
|
// lut depending on what bootstrap gets executed.
|
|
std::function<size_t(size_t)> indexMap;
|
|
if (is_signed) {
|
|
size_t halfInputSize = input_lut_size / 2;
|
|
indexMap = [=](size_t idx) {
|
|
if (idx < halfInputSize) {
|
|
return idx + halfInputSize;
|
|
} else {
|
|
return idx - halfInputSize;
|
|
}
|
|
};
|
|
} else {
|
|
indexMap = [=](size_t idx) { return idx; };
|
|
}
|
|
|
|
// The first lut value should be centered over zero. This means that half of
|
|
// it should appear at the beginning of the output lut, and half of it at the
|
|
// end (but negated).
|
|
for (size_t idx = 0; idx < mega_case_size / 2; ++idx) {
|
|
output_lut_aligned[output_lut_offset + idx] =
|
|
input_lut_aligned[input_lut_offset + indexMap(0)]
|
|
<< (64 - out_MESSAGE_BITS - 1);
|
|
}
|
|
for (size_t idx = (input_lut_size - 1) * mega_case_size + mega_case_size / 2;
|
|
idx < output_lut_size; ++idx) {
|
|
output_lut_aligned[output_lut_offset + idx] =
|
|
-(input_lut_aligned[input_lut_offset + indexMap(0)]
|
|
<< (64 - out_MESSAGE_BITS - 1));
|
|
}
|
|
|
|
// Treats the other ut values.
|
|
for (size_t lut_idx = 1; lut_idx < input_lut_size; ++lut_idx) {
|
|
uint64_t lut_value = input_lut_aligned[input_lut_offset + indexMap(lut_idx)]
|
|
<< (64 - out_MESSAGE_BITS - 1);
|
|
size_t start = mega_case_size * (lut_idx - 1) + mega_case_size / 2;
|
|
for (size_t output_idx = start; output_idx < start + mega_case_size;
|
|
++output_idx) {
|
|
output_lut_aligned[output_lut_offset + output_idx] = lut_value;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void memref_encode_lut_for_crt_woppbs(
|
|
// Output encoded/expanded lut
|
|
uint64_t *output_lut_allocated, uint64_t *output_lut_aligned,
|
|
uint64_t output_lut_offset, uint64_t output_lut_size0,
|
|
uint64_t output_lut_size1, uint64_t output_lut_stride0,
|
|
uint64_t output_lut_stride1,
|
|
// Input lut
|
|
uint64_t *input_lut_allocated, uint64_t *input_lut_aligned,
|
|
uint64_t input_lut_offset, uint64_t input_lut_size,
|
|
uint64_t input_lut_stride,
|
|
// Crt coprimes
|
|
uint64_t *crt_decomposition_allocated, uint64_t *crt_decomposition_aligned,
|
|
uint64_t crt_decomposition_offset, uint64_t crt_decomposition_size,
|
|
uint64_t crt_decomposition_stride,
|
|
// Crt number of bits
|
|
uint64_t *crt_bits_allocated, uint64_t *crt_bits_aligned,
|
|
uint64_t crt_bits_offset, uint64_t crt_bits_size, uint64_t crt_bits_stride,
|
|
// Crypto parameters
|
|
uint32_t modulus_product, bool is_signed) {
|
|
|
|
assert(input_lut_stride == 1 && "Runtime: stride not equal to 1, check "
|
|
"memref_encode_lut_woppbs");
|
|
assert(output_lut_stride0 == output_lut_size1 &&
|
|
"Runtime: out dim stride not equal to in_dim size, check "
|
|
"memref_encode_lut_woppbs");
|
|
assert(output_lut_stride1 == 1 && "Runtime: stride not equal to 1, check "
|
|
"memref_encode_lut_woppbs");
|
|
|
|
assert(modulus_product >= input_lut_size);
|
|
|
|
// Initialize lut cases not supposed to be reached
|
|
for (uint64_t i = 0; i < output_lut_size0 * output_lut_size1; i++) {
|
|
output_lut_aligned[output_lut_offset + i] = 0;
|
|
}
|
|
|
|
// When the woppbs is executed on encrypted signed integers, the index of the
|
|
// lut elements must be adapted to fit the way signed are encrypted in CRT
|
|
// (to ensure the lookup falls into the proper case).
|
|
// This map takes care about properly indexing into the output lut depending
|
|
// on what bootstrap gets executed.
|
|
std::function<uint64_t(uint64_t)> indexMap;
|
|
if (!is_signed) {
|
|
// When not signed, the integer values are encoded in increasing order. That
|
|
// is (example of 9 bits values, using crt decomposition [5,7,16]):
|
|
//
|
|
// |0 511|
|
|
// |---------|
|
|
// |0 511|
|
|
//
|
|
// is encoded as
|
|
//
|
|
// |0 511| INVALID |
|
|
// |-------|-----------|
|
|
// |0 511|512 559|
|
|
//
|
|
// Where on top are represented the semantic values, and below, the actual
|
|
// encoding of values, either on uint64_t or as increasing crt values.
|
|
//
|
|
// As a consequence, there is nothing particular to do to map the index of
|
|
// the input lut to an index of the output lut.
|
|
indexMap = [=](uint64_t plaintext) { return plaintext; };
|
|
} else {
|
|
// When signed, the integer values are encoded in a way that resembles 2s
|
|
// complement. That is (example of 9 bits values, using crt decomposition
|
|
// [5,7,16]):
|
|
//
|
|
// |0 255|-256 -1|
|
|
// |---------|----------|
|
|
// |0 255|256 511|
|
|
//
|
|
// is encoded as
|
|
//
|
|
// |0 255| INVALID |-256 -1|
|
|
// |---------|-------------|----------|
|
|
// |0 255|256 303|304 559|
|
|
//
|
|
// Where on top are represented the semantic values, and below, the actual
|
|
// encoding of values, either on uint64_t or as increasing crt values.
|
|
//
|
|
// As a consequence, to map the index of the input lut to an index of the
|
|
// output lut we must take care of crossing the invalid range in between
|
|
// positive values and negative values.
|
|
indexMap = [=](uint64_t plaintext) {
|
|
if (plaintext >= (input_lut_size / 2)) {
|
|
plaintext += modulus_product - input_lut_size;
|
|
}
|
|
return plaintext;
|
|
};
|
|
}
|
|
|
|
uint64_t log_lut_crt_size = 0;
|
|
|
|
for (size_t in_block = 0; in_block < crt_decomposition_size; in_block++) {
|
|
auto bits_count = crt_bits_aligned[crt_bits_offset + in_block];
|
|
log_lut_crt_size += bits_count;
|
|
}
|
|
|
|
uint64_t lut_crt_size = 1 << log_lut_crt_size;
|
|
assert(lut_crt_size == output_lut_size1);
|
|
assert(crt_decomposition_size == output_lut_size0);
|
|
|
|
for (uint64_t in_index = 0; in_index < input_lut_size; in_index++) {
|
|
uint64_t out_index = 0;
|
|
|
|
{
|
|
uint64_t total_bit_count = 0;
|
|
for (size_t in_block = 0; in_block < crt_decomposition_size; in_block++) {
|
|
auto in_base =
|
|
crt_decomposition_aligned[crt_decomposition_offset + in_block];
|
|
auto bits_count = crt_bits_aligned[crt_bits_offset + in_block];
|
|
out_index += (((indexMap(in_index) % in_base) << bits_count) / in_base)
|
|
<< total_bit_count;
|
|
total_bit_count += bits_count;
|
|
}
|
|
}
|
|
|
|
for (size_t out_block = 0; out_block < crt_decomposition_size;
|
|
out_block++) {
|
|
auto out_base =
|
|
crt_decomposition_aligned[crt_decomposition_offset + out_block];
|
|
auto v = encode_crt(input_lut_aligned[input_lut_offset + in_index],
|
|
out_base, modulus_product);
|
|
output_lut_aligned[output_lut_offset + out_block * lut_crt_size +
|
|
out_index] = v;
|
|
}
|
|
}
|
|
}
|
|
|
|
void memref_add_lwe_ciphertexts_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size, uint64_t out_stride, uint64_t *ct0_allocated,
|
|
uint64_t *ct0_aligned, uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride, uint64_t *ct1_allocated, uint64_t *ct1_aligned,
|
|
uint64_t ct1_offset, uint64_t ct1_size, uint64_t ct1_stride) {
|
|
assert(out_size == ct0_size && out_size == ct1_size &&
|
|
"size of lwe buffer are incompatible");
|
|
size_t lwe_dimension = out_size - 1;
|
|
concrete_cpu_add_lwe_ciphertext_u64(out_aligned + out_offset,
|
|
ct0_aligned + ct0_offset,
|
|
ct1_aligned + ct1_offset, lwe_dimension);
|
|
}
|
|
|
|
void memref_add_plaintext_lwe_ciphertext_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size, uint64_t out_stride, uint64_t *ct0_allocated,
|
|
uint64_t *ct0_aligned, uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride, uint64_t plaintext) {
|
|
assert(out_size == ct0_size && "size of lwe buffer are incompatible");
|
|
size_t lwe_dimension = out_size - 1;
|
|
concrete_cpu_add_plaintext_lwe_ciphertext_u64(out_aligned + out_offset,
|
|
ct0_aligned + ct0_offset,
|
|
plaintext, lwe_dimension);
|
|
}
|
|
|
|
void memref_mul_cleartext_lwe_ciphertext_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size, uint64_t out_stride, uint64_t *ct0_allocated,
|
|
uint64_t *ct0_aligned, uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride, uint64_t cleartext) {
|
|
assert(out_size == ct0_size && "size of lwe buffer are incompatible");
|
|
size_t lwe_dimension = out_size - 1;
|
|
concrete_cpu_mul_cleartext_lwe_ciphertext_u64(out_aligned + out_offset,
|
|
ct0_aligned + ct0_offset,
|
|
cleartext, lwe_dimension);
|
|
}
|
|
|
|
void memref_negate_lwe_ciphertext_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size, uint64_t out_stride, uint64_t *ct0_allocated,
|
|
uint64_t *ct0_aligned, uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride) {
|
|
assert(out_size == ct0_size && "size of lwe buffer are incompatible");
|
|
size_t lwe_dimension = {out_size - 1};
|
|
concrete_cpu_negate_lwe_ciphertext_u64(
|
|
out_aligned + out_offset, ct0_aligned + ct0_offset, lwe_dimension);
|
|
}
|
|
|
|
void memref_keyswitch_lwe_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size, uint64_t out_stride, uint64_t *ct0_allocated,
|
|
uint64_t *ct0_aligned, uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride, uint32_t decomposition_level_count,
|
|
uint32_t decomposition_base_log, uint32_t input_dimension,
|
|
uint32_t output_dimension, mlir::concretelang::RuntimeContext *context) {
|
|
assert(out_stride == 1 && ct0_stride == 1);
|
|
// Get keyswitch key - TODO Give a non hardcoded keyID
|
|
const uint64_t *keyswitch_key = context->keyswitch_key_buffer(0);
|
|
// Get stack parameter
|
|
concrete_cpu_keyswitch_lwe_ciphertext_u64(
|
|
out_aligned + out_offset, ct0_aligned + ct0_offset, keyswitch_key,
|
|
decomposition_level_count, decomposition_base_log, input_dimension,
|
|
output_dimension);
|
|
}
|
|
|
|
void memref_batched_keyswitch_lwe_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size0, uint64_t out_size1, uint64_t out_stride0,
|
|
uint64_t out_stride1, uint64_t *ct0_allocated, uint64_t *ct0_aligned,
|
|
uint64_t ct0_offset, uint64_t ct0_size0, uint64_t ct0_size1,
|
|
uint64_t ct0_stride0, uint64_t ct0_stride1, uint32_t level,
|
|
uint32_t base_log, uint32_t input_lwe_dim, uint32_t output_lwe_dim,
|
|
mlir::concretelang::RuntimeContext *context) {
|
|
for (size_t i = 0; i < ct0_size0; i++) {
|
|
memref_keyswitch_lwe_u64(
|
|
out_allocated + i * out_size1, out_aligned + i * out_size1, out_offset,
|
|
out_size1, out_stride1, ct0_allocated + i * ct0_size1,
|
|
ct0_aligned + i * ct0_size1, ct0_offset, ct0_size1, ct0_stride1, level,
|
|
base_log, input_lwe_dim, output_lwe_dim, context);
|
|
}
|
|
}
|
|
|
|
void memref_bootstrap_lwe_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size, uint64_t out_stride, uint64_t *ct0_allocated,
|
|
uint64_t *ct0_aligned, uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride, uint64_t *tlu_allocated, uint64_t *tlu_aligned,
|
|
uint64_t tlu_offset, uint64_t tlu_size, uint64_t tlu_stride,
|
|
uint32_t input_lwe_dimension, uint32_t polynomial_size,
|
|
uint32_t decomposition_level_count, uint32_t decomposition_base_log,
|
|
uint32_t glwe_dimension, uint32_t precision,
|
|
mlir::concretelang::RuntimeContext *context) {
|
|
|
|
uint64_t glwe_ct_size = polynomial_size * (glwe_dimension + 1);
|
|
uint64_t *glwe_ct = (uint64_t *)malloc(glwe_ct_size * sizeof(uint64_t));
|
|
auto tlu = tlu_aligned + tlu_offset;
|
|
|
|
// Glwe trivial encryption
|
|
for (size_t i = 0; i < polynomial_size * glwe_dimension; i++) {
|
|
glwe_ct[i] = 0;
|
|
}
|
|
for (size_t i = 0; i < polynomial_size; i++) {
|
|
glwe_ct[polynomial_size * glwe_dimension + i] = tlu[i];
|
|
}
|
|
|
|
// Get fourrier bootstrap key - TODO Give a non hardcoded keyID
|
|
size_t keyId = 0;
|
|
const auto &fft = context->fft(keyId);
|
|
auto bootstrap_key = context->fourier_bootstrap_key_buffer(keyId);
|
|
// Get stack parameter
|
|
size_t scratch_size;
|
|
size_t scratch_align;
|
|
concrete_cpu_bootstrap_lwe_ciphertext_u64_scratch(
|
|
&scratch_size, &scratch_align, glwe_dimension, polynomial_size, fft);
|
|
// Allocate scratch
|
|
auto scratch = (uint8_t *)aligned_alloc(scratch_align, scratch_size);
|
|
|
|
// Bootstrap
|
|
concrete_cpu_bootstrap_lwe_ciphertext_u64(
|
|
out_aligned + out_offset, ct0_aligned + ct0_offset, glwe_ct,
|
|
bootstrap_key, decomposition_level_count, decomposition_base_log,
|
|
glwe_dimension, polynomial_size, input_lwe_dimension, fft, scratch,
|
|
scratch_size);
|
|
|
|
free(glwe_ct);
|
|
free(scratch);
|
|
}
|
|
|
|
void memref_batched_bootstrap_lwe_u64(
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size0, uint64_t out_size1, uint64_t out_stride0,
|
|
uint64_t out_stride1, uint64_t *ct0_allocated, uint64_t *ct0_aligned,
|
|
uint64_t ct0_offset, uint64_t ct0_size0, uint64_t ct0_size1,
|
|
uint64_t ct0_stride0, uint64_t ct0_stride1, uint64_t *tlu_allocated,
|
|
uint64_t *tlu_aligned, uint64_t tlu_offset, uint64_t tlu_size,
|
|
uint64_t tlu_stride, uint32_t input_lwe_dim, uint32_t poly_size,
|
|
uint32_t level, uint32_t base_log, uint32_t glwe_dim, uint32_t precision,
|
|
mlir::concretelang::RuntimeContext *context) {
|
|
|
|
for (size_t i = 0; i < out_size0; i++) {
|
|
memref_bootstrap_lwe_u64(
|
|
out_allocated + i * out_size1, out_aligned + i * out_size1, out_offset,
|
|
out_size1, out_stride1, ct0_allocated, ct0_aligned + i * ct0_size1,
|
|
ct0_offset, ct0_size1, ct0_stride1, tlu_allocated, tlu_aligned,
|
|
tlu_offset, tlu_size, tlu_stride, input_lwe_dim, poly_size, level,
|
|
base_log, glwe_dim, precision, context);
|
|
}
|
|
}
|
|
|
|
uint64_t encode_crt(int64_t plaintext, uint64_t modulus, uint64_t product) {
|
|
return concretelang::clientlib::crt::encode(plaintext, modulus, product);
|
|
}
|
|
|
|
void memref_wop_pbs_crt_buffer(
|
|
// Output 2D memref
|
|
uint64_t *out_allocated, uint64_t *out_aligned, uint64_t out_offset,
|
|
uint64_t out_size_0, uint64_t out_size_1, uint64_t out_stride_0,
|
|
uint64_t out_stride_1,
|
|
// Input 2D memref
|
|
uint64_t *in_allocated, uint64_t *in_aligned, uint64_t in_offset,
|
|
uint64_t in_size_0, uint64_t in_size_1, uint64_t in_stride_0,
|
|
uint64_t in_stride_1,
|
|
// clear text lut 1D memref
|
|
uint64_t *lut_ct_allocated, uint64_t *lut_ct_aligned,
|
|
uint64_t lut_ct_offset, uint64_t lut_ct_size0, uint64_t lut_ct_size1,
|
|
uint64_t lut_ct_stride0, uint64_t lut_ct_stride1,
|
|
// CRT decomposition 1D memref
|
|
uint64_t *crt_decomp_allocated, uint64_t *crt_decomp_aligned,
|
|
uint64_t crt_decomp_offset, uint64_t crt_decomp_size,
|
|
uint64_t crt_decomp_stride,
|
|
// Additional crypto parameters
|
|
uint32_t lwe_small_size, uint32_t cbs_level_count, uint32_t cbs_base_log,
|
|
uint32_t ksk_level_count, uint32_t ksk_base_log, uint32_t bsk_level_count,
|
|
uint32_t bsk_base_log, uint32_t fpksk_level_count, uint32_t fpksk_base_log,
|
|
uint32_t polynomial_size,
|
|
// runtime context that hold evluation keys
|
|
mlir::concretelang::RuntimeContext *context) {
|
|
|
|
// The compiler should only generates 2D memref<BxS>, where B is the number of
|
|
// ciphertext block and S the lweSize.
|
|
// Check for the strides
|
|
|
|
assert(out_stride_1 == 1);
|
|
assert(in_stride_0 == in_size_1 && in_stride_0 == in_size_1);
|
|
// Check for the size B
|
|
assert(out_size_0 == in_size_0 && out_size_0 == crt_decomp_size);
|
|
// Check for the size S
|
|
assert(out_size_1 == in_size_1);
|
|
|
|
uint64_t lwe_small_dim = lwe_small_size - 1;
|
|
|
|
assert(out_size_1 == in_size_1);
|
|
uint64_t lwe_big_size = in_size_1;
|
|
uint64_t lwe_big_dim = lwe_big_size - 1;
|
|
assert(lwe_big_dim % polynomial_size == 0);
|
|
|
|
assert(lwe_big_dim % polynomial_size == 0);
|
|
uint64_t glwe_dim = lwe_big_dim / polynomial_size;
|
|
|
|
// Compute the numbers of bits to extract for each block and the total one.
|
|
uint64_t total_number_of_bits_per_block = 0;
|
|
auto number_of_bits_per_block = new uint64_t[crt_decomp_size]();
|
|
for (uint64_t i = 0; i < crt_decomp_size; i++) {
|
|
uint64_t modulus = crt_decomp_aligned[i + crt_decomp_offset];
|
|
uint64_t nb_bit_to_extract =
|
|
static_cast<uint64_t>(ceil(log2(static_cast<double>(modulus))));
|
|
number_of_bits_per_block[i] = nb_bit_to_extract;
|
|
|
|
total_number_of_bits_per_block += nb_bit_to_extract;
|
|
}
|
|
|
|
// Create the buffer of ciphertexts for storing the total number of bits to
|
|
// extract.
|
|
// The extracted bit should be in the following order:
|
|
//
|
|
// [msb(m%crt[n-1])..lsb(m%crt[n-1])...msb(m%crt[0])..lsb(m%crt[0])] where n
|
|
// is the size of the crt decomposition
|
|
auto extract_bits_output_buffer =
|
|
new uint64_t[lwe_small_size * total_number_of_bits_per_block]{0};
|
|
|
|
// We make a private copy to apply a subtraction on the body
|
|
auto first_ciphertext = in_aligned + in_offset;
|
|
auto copy_size = crt_decomp_size * lwe_big_size;
|
|
std::vector<uint64_t> in_copy(first_ciphertext, first_ciphertext + copy_size);
|
|
// Extraction of each bit for each block
|
|
|
|
size_t fftKeyId = 0;
|
|
const auto &fft = context->fft(fftKeyId);
|
|
size_t bskKeyId = 0;
|
|
auto bootstrap_key = context->fourier_bootstrap_key_buffer(bskKeyId);
|
|
|
|
size_t kskKeyId = 0;
|
|
auto keyswicth_key = context->keyswitch_key_buffer(kskKeyId);
|
|
|
|
for (int64_t i = crt_decomp_size - 1, extract_bits_output_offset = 0; i >= 0;
|
|
extract_bits_output_offset += number_of_bits_per_block[i--]) {
|
|
auto nb_bits_to_extract = number_of_bits_per_block[i];
|
|
|
|
size_t delta_log = 64 - nb_bits_to_extract;
|
|
|
|
auto in_block = &in_copy[lwe_big_size * i];
|
|
|
|
// trick ( ct - delta/2 + delta/2^4 )
|
|
uint64_t sub = (uint64_t(1) << (uint64_t(64) - nb_bits_to_extract - 1)) -
|
|
(uint64_t(1) << (uint64_t(64) - nb_bits_to_extract - 5));
|
|
in_block[lwe_big_size - 1] -= sub;
|
|
|
|
size_t scratch_size;
|
|
size_t scratch_align;
|
|
concrete_cpu_extract_bit_lwe_ciphertext_u64_scratch(
|
|
&scratch_size, &scratch_align, lwe_small_dim, lwe_big_dim, glwe_dim,
|
|
polynomial_size, fft);
|
|
// Allocate scratch
|
|
auto *scratch = (uint8_t *)aligned_alloc(scratch_align, scratch_size);
|
|
|
|
concrete_cpu_extract_bit_lwe_ciphertext_u64(
|
|
&extract_bits_output_buffer[lwe_small_size *
|
|
extract_bits_output_offset],
|
|
in_block, bootstrap_key, keyswicth_key, lwe_small_dim,
|
|
nb_bits_to_extract, lwe_big_dim, nb_bits_to_extract, delta_log,
|
|
bsk_level_count, bsk_base_log, glwe_dim, polynomial_size, lwe_small_dim,
|
|
ksk_level_count, ksk_base_log, lwe_big_dim, lwe_small_dim, fft, scratch,
|
|
scratch_size);
|
|
|
|
free(scratch);
|
|
}
|
|
|
|
size_t ct_in_count = total_number_of_bits_per_block;
|
|
size_t lut_size = 1 << ct_in_count;
|
|
size_t ct_out_count = out_size_0;
|
|
size_t lut_count = ct_out_count;
|
|
|
|
assert(lut_ct_size0 == lut_count);
|
|
assert(lut_ct_size1 == lut_size);
|
|
|
|
// Vertical packing
|
|
size_t scratch_size;
|
|
size_t scratch_align;
|
|
concrete_cpu_circuit_bootstrap_boolean_vertical_packing_lwe_ciphertext_u64_scratch(
|
|
&scratch_size, &scratch_align, ct_out_count, lwe_small_dim, ct_in_count,
|
|
lut_size, lut_count, glwe_dim, polynomial_size, polynomial_size,
|
|
cbs_level_count, fft);
|
|
|
|
auto *scratch = (uint8_t *)aligned_alloc(scratch_align, scratch_size);
|
|
|
|
size_t fpkskKeyId = 0;
|
|
auto fp_keyswicth_key = context->fp_keyswitch_key_buffer(fpkskKeyId);
|
|
|
|
concrete_cpu_circuit_bootstrap_boolean_vertical_packing_lwe_ciphertext_u64(
|
|
out_aligned + out_offset, extract_bits_output_buffer,
|
|
lut_ct_aligned + lut_ct_offset, bootstrap_key, fp_keyswicth_key,
|
|
lwe_big_dim, ct_out_count, lwe_small_dim, ct_in_count, lut_size,
|
|
lut_count, bsk_level_count, bsk_base_log, glwe_dim, polynomial_size,
|
|
lwe_small_dim, fpksk_level_count, fpksk_base_log, lwe_big_dim, glwe_dim,
|
|
polynomial_size, glwe_dim + 1, cbs_level_count, cbs_base_log, fft,
|
|
scratch, scratch_size);
|
|
|
|
free(scratch);
|
|
}
|
|
|
|
void memref_copy_one_rank(uint64_t *src_allocated, uint64_t *src_aligned,
|
|
uint64_t src_offset, uint64_t src_size,
|
|
uint64_t src_stride, uint64_t *dst_allocated,
|
|
uint64_t *dst_aligned, uint64_t dst_offset,
|
|
uint64_t dst_size, uint64_t dst_stride) {
|
|
assert(src_size == dst_size && "memref_copy_one_rank size differs");
|
|
if (src_stride == dst_stride) {
|
|
memcpy(dst_aligned + dst_offset, src_aligned + src_offset,
|
|
src_size * sizeof(uint64_t));
|
|
return;
|
|
}
|
|
for (size_t i = 0; i < src_size; i++) {
|
|
dst_aligned[dst_offset + i * dst_stride] =
|
|
src_aligned[src_offset + i * src_stride];
|
|
}
|
|
}
|
|
|
|
void memref_trace_ciphertext(uint64_t *ct0_allocated, uint64_t *ct0_aligned,
|
|
uint64_t ct0_offset, uint64_t ct0_size,
|
|
uint64_t ct0_stride, char *message_ptr,
|
|
uint32_t message_len, uint32_t msb) {
|
|
std::string message{message_ptr, (size_t)message_len};
|
|
std::cout << message << " : ";
|
|
std::bitset<64> bits{ct0_aligned[ct0_offset + ct0_size - 1]};
|
|
std::string bitstring = bits.to_string();
|
|
bitstring.insert(msb, 1, ' ');
|
|
std::cout << bitstring << std::endl;
|
|
}
|
|
|
|
void memref_trace_plaintext(uint64_t input, uint64_t input_width,
|
|
char *message_ptr, uint32_t message_len,
|
|
uint32_t msb) {
|
|
std::string message{message_ptr, (size_t)message_len};
|
|
std::cout << message << " : ";
|
|
std::bitset<64> bits{input};
|
|
std::string bitstring = bits.to_string();
|
|
bitstring.erase(0, 64 - input_width);
|
|
bitstring.insert(msb, 1, ' ');
|
|
std::cout << bitstring << std::endl;
|
|
}
|
|
|
|
void memref_trace_message(char *message_ptr, uint32_t message_len) {
|
|
std::string message{message_ptr, (size_t)message_len};
|
|
std::cout << message << std::endl;
|
|
}
|