Files
concrete/concrete-optimizer/src/optimization/wop_atomic_pattern/optimize.rs

638 lines
27 KiB
Rust

use crate::computing_cost::complexity::Complexity;
use crate::computing_cost::operators::atomic_pattern as complexity_atomic_pattern;
use crate::computing_cost::operators::keyswitch_lwe::KeySwitchLWEComplexity;
use crate::computing_cost::operators::pbs::PbsComplexity;
use crate::noise_estimator::error::{
error_probability_of_sigma_scale, sigma_scale_of_error_probability,
};
use crate::noise_estimator::operators::atomic_pattern as noise_atomic_pattern;
use crate::noise_estimator::operators::wop_atomic_pattern::estimate_packing_private_keyswitch;
use crate::optimization::atomic_pattern;
use crate::optimization::wop_atomic_pattern::pareto::{
BR_BL, BR_BL_FOR_CB, CB_V1_BL, KS_BL, KS_BL_FOR_CB,
};
use crate::parameters::{
GlweParameters, KeyswitchParameters, KsDecompositionParameters, LweDimension, PbsParameters,
};
use crate::security;
use crate::utils::square;
use complexity_atomic_pattern::DEFAULT as DEFAULT_COMPLEXITY;
use concrete_commons::dispersion::{DispersionParameter, Variance};
use concrete_commons::numeric::UnsignedInteger;
use std::collections::HashMap;
pub fn find_p_error(kappa: f64, variance_max: f64, current_maximum_noise: f64) -> f64 {
let sigma = Variance(variance_max).get_standard_dev() * kappa;
let sigma_scale = sigma / Variance(current_maximum_noise).get_standard_dev();
error_probability_of_sigma_scale(sigma_scale)
}
#[derive(Clone, Debug)]
pub struct OptimizationState {
pub best_solution: Option<Solution>,
pub count_domain: usize,
}
#[derive(Clone, Debug)]
pub struct Solution {
pub input_lwe_dimension: u64,
//n_big
pub internal_ks_output_lwe_dimension: u64,
//n_small
pub ks_decomposition_level_count: u64,
//l(KS)
pub ks_decomposition_base_log: u64,
//b(KS)
pub glwe_polynomial_size: u64,
//N
pub glwe_dimension: u64,
//k
pub br_decomposition_level_count: u64,
//l(BR)
pub br_decomposition_base_log: u64,
//b(BR)
pub complexity: f64,
pub noise_max: f64,
pub p_error: f64,
// error probability
pub cb_decomposition_level_count: Option<u64>,
pub cb_decomposition_base_log: Option<u64>,
}
impl Solution {
pub fn init() -> Self {
Self {
input_lwe_dimension: 0,
internal_ks_output_lwe_dimension: 0,
ks_decomposition_level_count: 0,
ks_decomposition_base_log: 0,
glwe_polynomial_size: 0,
glwe_dimension: 0,
br_decomposition_level_count: 0,
br_decomposition_base_log: 0,
complexity: 0.,
noise_max: 0.0,
p_error: 0.0,
cb_decomposition_level_count: None,
cb_decomposition_base_log: None,
}
}
}
#[allow(clippy::type_complexity)]
#[derive(Debug)]
pub struct Tab {
pbs: HashMap<(u64, u64, u64, u64, u64), (f64, Complexity)>,
modulus_switching: HashMap<(u64, u64), f64>,
key_switching: HashMap<(u64, u64, u64), Vec<(KsDecompositionParameters, (f64, Complexity))>>,
// NEW VALUE MEMOIZED
pp_switching: HashMap<(u64, u64, u64, u64), (f64, Complexity)>,
}
#[allow(clippy::too_many_lines)]
pub fn tabulate_circuit_bootstrap<W: UnsignedInteger>(
security_level: u64,
maximum_acceptable_error_probability: f64,
glwe_log_polynomial_sizes: &[u64],
glwe_dimensions: &[u64],
internal_lwe_dimensions: &[u64],
) -> Tab {
assert_eq!(security_level, 128);
assert!(0.0 < maximum_acceptable_error_probability);
assert!(maximum_acceptable_error_probability < 1.0);
let ciphertext_modulus_log = W::BITS as u64;
let mut noise_cost_pbs = HashMap::new();
let mut noise_cost_modulus_switching = HashMap::new();
let mut noise_cost_key_switching = HashMap::new();
let mut noise_cost_pp_switching = HashMap::new();
for &glwe_dim in glwe_dimensions {
for &glwe_log_poly_size in glwe_log_polynomial_sizes {
assert!(8 <= glwe_log_poly_size);
assert!(glwe_log_poly_size < 18);
let glwe_poly_size = 1 << glwe_log_poly_size;
if glwe_dim * glwe_poly_size <= 1 << 13 {
let glwe_params = GlweParameters {
log2_polynomial_size: glwe_log_poly_size,
glwe_dimension: glwe_dim,
};
let variance_bsk = security::glwe::minimal_variance(
glwe_params,
ciphertext_modulus_log,
security_level,
);
for &internal_dim in internal_lwe_dimensions {
assert!(256 < internal_dim);
let macro_key = (glwe_dim, glwe_poly_size, internal_dim);
let variance_ksk = noise_atomic_pattern::variance_ksk(
internal_dim,
ciphertext_modulus_log,
security_level,
);
let noise_modulus_switching =
noise_atomic_pattern::estimate_modulus_switching_noise_with_binary_key::<W>(
internal_dim,
glwe_params.polynomial_size(),
)
.get_variance();
let _ = noise_cost_modulus_switching
.insert((internal_dim, glwe_poly_size), noise_modulus_switching);
for &br_decomposition_parameter in BR_BL.iter() {
let pbs_parameters = PbsParameters {
internal_lwe_dimension: LweDimension(internal_dim),
br_decomposition_parameter,
output_glwe_params: glwe_params,
};
let complexity_pbs = DEFAULT_COMPLEXITY
.pbs
.complexity(pbs_parameters, ciphertext_modulus_log);
// let complexity_cmux =
// complexity_pbs / (pbs_parameters.internal_lwe_dimension.0 as f64);
// PBS of the first layer of the CB
let base_noise = noise_atomic_pattern::variance_bootstrap::<W>(
pbs_parameters,
ciphertext_modulus_log,
variance_bsk,
)
.get_variance();
let _ = noise_cost_pbs.insert(
(
glwe_dim,
glwe_poly_size,
internal_dim,
br_decomposition_parameter.log2_base,
br_decomposition_parameter.level,
),
(base_noise, complexity_pbs),
);
}
let mut ks_seq = Vec::with_capacity(KS_BL_FOR_CB.len());
for &ks_decomposition_parameter in KS_BL_FOR_CB.iter() {
let keyswitch_parameter = KeyswitchParameters {
input_lwe_dimension: LweDimension(glwe_poly_size * glwe_dim),
output_lwe_dimension: LweDimension(internal_dim),
ks_decomposition_parameter,
};
let complexity_keyswitch = DEFAULT_COMPLEXITY
.ks_lwe
.complexity(keyswitch_parameter, ciphertext_modulus_log);
// Keyswitch before bootstrap
let noise_keyswitch = noise_atomic_pattern::variance_keyswitch::<W>(
keyswitch_parameter,
ciphertext_modulus_log,
variance_ksk,
)
.get_variance();
ks_seq.push((
ks_decomposition_parameter,
(noise_keyswitch, complexity_keyswitch),
));
}
std::mem::drop(noise_cost_key_switching.insert(macro_key, ks_seq));
for &pp_ks_decomposition_parameter in BR_BL.iter() {
let ppks_parameter = PbsParameters {
internal_lwe_dimension: LweDimension(
glwe_params.glwe_dimension * glwe_params.polynomial_size(),
),
br_decomposition_parameter: pp_ks_decomposition_parameter,
output_glwe_params: glwe_params,
};
// We assume the packing KS and theexternal product in a PBSto have
// the same parameters (base, level)
let noise_private_packing_ks = estimate_packing_private_keyswitch::<W>(
Variance(0.),
variance_bsk,
ppks_parameter,
)
.get_variance();
let ppks_parameter_complexity = KeyswitchParameters {
input_lwe_dimension: LweDimension(
glwe_params.glwe_dimension * glwe_params.polynomial_size(),
),
output_lwe_dimension: LweDimension(
glwe_params.glwe_dimension * glwe_params.polynomial_size(),
),
ks_decomposition_parameter: KsDecompositionParameters {
level: pp_ks_decomposition_parameter.level,
log2_base: pp_ks_decomposition_parameter.log2_base,
},
};
let complexity_ppks = DEFAULT_COMPLEXITY
.ks_lwe
.complexity(ppks_parameter_complexity, ciphertext_modulus_log);
let _ = noise_cost_pp_switching.insert(
(
glwe_dim,
glwe_poly_size,
pp_ks_decomposition_parameter.log2_base,
pp_ks_decomposition_parameter.level,
),
(noise_private_packing_ks, complexity_ppks),
);
}
}
}
}
}
Tab {
pbs: noise_cost_pbs,
modulus_switching: noise_cost_modulus_switching,
key_switching: noise_cost_key_switching,
pp_switching: noise_cost_pp_switching,
}
}
const BITS_PADDING_WITHOUT_NOISE: u64 = 1;
#[allow(clippy::expect_fun_call)]
#[allow(clippy::identity_op)]
#[allow(clippy::too_many_lines)]
pub fn optimise_one_with_memo<W: UnsignedInteger>(
precision: u64, // max precision of a word
log_norm: f64, // ?? norm2 of noise multisum, complexity of multisum is neglected
_security_level: u64,
maximum_acceptable_error_probability: f64,
glwe_log_polynomial_sizes: &[u64],
glwe_dimensions: &[u64],
internal_lwe_dimensions: &[u64],
n_functions: u64, // Many functions at the same time, stay at 1 for start
memo: &Tab,
n_inputs: u64, // Tau (nb blocks)
) -> OptimizationState {
assert!(0.0 < maximum_acceptable_error_probability);
assert!(maximum_acceptable_error_probability < 1.0);
let ciphertext_modulus_log = W::BITS as u64;
let global_precision = n_inputs * precision;
// Circuit BS bound
// 1 bit of message only here =)
let no_noise_bits = 0 + 1 + BITS_PADDING_WITHOUT_NOISE;
let noise_bits = ciphertext_modulus_log - no_noise_bits;
let fatal_noise_limit = (1_u64 << noise_bits) as f64;
let kappa: f64 = sigma_scale_of_error_probability(maximum_acceptable_error_probability);
let safe_sigma = fatal_noise_limit / kappa;
// Bound for first bit extract in BitExtract (dominate others)
let variance_max = Variance::from_modular_variance::<W>(square(safe_sigma)).get_variance();
let mut state = OptimizationState {
best_solution: None,
count_domain: glwe_dimensions.len()
* glwe_log_polynomial_sizes.len()
* internal_lwe_dimensions.len()
* KS_BL.len()
* BR_BL.len(),
};
let mut best_complexity = f64::INFINITY;
for &glwe_dim in glwe_dimensions {
for &glwe_log_poly_size in glwe_log_polynomial_sizes {
let glwe_poly_size = 1 << glwe_log_poly_size;
if glwe_dim * glwe_poly_size <= 1 << 13 {
// Manual experimental CUT
let glwe_params = GlweParameters {
log2_polynomial_size: glwe_log_poly_size,
glwe_dimension: glwe_dim,
};
let input_lwe_dimension = glwe_params.lwe_dimension();
for &internal_dim in internal_lwe_dimensions {
let &noise_modulus_switching = memo
.modulus_switching
.get(&(internal_dim, glwe_poly_size))
.expect(&format!(
"Internal_dim : {} ; glwe poly size: {}",
internal_dim, glwe_poly_size
));
if noise_modulus_switching > variance_max {
continue;
}
let macro_key = (glwe_dim, glwe_poly_size, internal_dim);
// BlindRotate dans Circuit BS
for &br_decomposition_parameter in BR_BL_FOR_CB.iter() {
// Pbs dans BitExtract et Circuit BS et FP-KS (partagés)
// TODO: choisir indépendemment(separate FP-KS)
let pbs_parameters = PbsParameters {
internal_lwe_dimension: LweDimension(internal_dim),
br_decomposition_parameter,
output_glwe_params: glwe_params,
};
let &(base_noise, complexity_pbs) = memo
.pbs
.get(&(
glwe_dim,
glwe_poly_size,
internal_dim,
br_decomposition_parameter.log2_base,
br_decomposition_parameter.level,
))
.unwrap();
// new pbs key for the bit extract pbs, shared
let bit_extract_decomposition_parameter = br_decomposition_parameter;
let &(_bit_extract_base_noise, complexity_bit_extract_pbs) = memo
.pbs
.get(&(
glwe_dim,
glwe_poly_size,
internal_dim,
bit_extract_decomposition_parameter.log2_base,
bit_extract_decomposition_parameter.level,
))
.unwrap();
let complexity_bit_extract_wo_ks =
(n_inputs * (precision - 1)) as f64 * complexity_bit_extract_pbs;
if complexity_bit_extract_wo_ks > best_complexity {
continue;
}
// private packing keyswitch, <=> FP-KS (Circuit Boostrap)
let pp_ks_decomposition_parameter =
pbs_parameters.br_decomposition_parameter;
// Circuit Boostrap
let &(base_noise_private_packing_ks, complexity_ppks) = memo
.pp_switching
.get(&(
glwe_dim,
glwe_poly_size,
pp_ks_decomposition_parameter.log2_base,
pp_ks_decomposition_parameter.level,
))
.expect(&format!(
"{}, {}, {}, {}",
glwe_dim,
glwe_poly_size,
pp_ks_decomposition_parameter.log2_base,
pp_ks_decomposition_parameter.level,
));
// CircuitBootstrap: new parameters l,b
for &circuit_pbs_decomposition_parameter in CB_V1_BL.iter() {
// Hybrid packing
let nb_cmux = 1_u64;
let cmux_tree_blind_rotate_parameters = PbsParameters {
internal_lwe_dimension: LweDimension(nb_cmux), // complexity for 1 cmux
br_decomposition_parameter: circuit_pbs_decomposition_parameter,
output_glwe_params: pbs_parameters.output_glwe_params,
};
// Hybrid packing
let complexity_1_cmux_hp = DEFAULT_COMPLEXITY.pbs.complexity(
cmux_tree_blind_rotate_parameters,
ciphertext_modulus_log,
); // TODO: missing fft transform
// Hybrid packing (Do we have 1 or 2 groups)
let log2_polynomial_size =
pbs_parameters.output_glwe_params.log2_polynomial_size;
// Size of cmux_group, can be zero
let cmux_group_count = if global_precision > log2_polynomial_size {
2f64.powi((global_precision - log2_polynomial_size - 1) as i32)
} else {
0.0
};
let complexity_cmux_tree =
cmux_group_count as f64 * complexity_1_cmux_hp;
// Hybrid packing blind rotate
let complexity_g_br = complexity_1_cmux_hp
* u64::min(
pbs_parameters.output_glwe_params.log2_polynomial_size,
global_precision,
) as f64;
let complexity_hybrid_packing = complexity_cmux_tree + complexity_g_br;
let complexity_multi_hybrid_packing =
n_functions as f64 * complexity_hybrid_packing;
// Circuit bs: fp-ks
let complexity_all_ppks =
((pbs_parameters.output_glwe_params.glwe_dimension + 1)
* circuit_pbs_decomposition_parameter.level
* precision
* n_inputs) as f64
* complexity_ppks;
// Circuit bs: pbs
let complexity_all_pbs =
(n_inputs * precision * circuit_pbs_decomposition_parameter.level)
as f64
* complexity_pbs;
let complexity_circuit_bs = complexity_all_pbs + complexity_all_ppks;
if complexity_bit_extract_wo_ks + complexity_circuit_bs
> best_complexity
{
continue;
}
let noise_ggsw = base_noise_private_packing_ks + base_noise / 2.;
// Circuit Boostrap
let noise_hybrid_packing = noise_modulus_switching + noise_ggsw;
if noise_hybrid_packing > variance_max {
continue;
}
let noise_one_external_product_for_cmux_tree =
noise_atomic_pattern::variance_bootstrap::<W>(
cmux_tree_blind_rotate_parameters,
ciphertext_modulus_log,
Variance::from_variance(noise_ggsw),
)
.get_variance();
// final out noise hybrid packing
let noise_cmux_tree_blind_rotate =
noise_one_external_product_for_cmux_tree
* (precision * n_inputs) as f64;
let noise_multisum =
(2_f64.powf(2. * log_norm as f64)) * noise_cmux_tree_blind_rotate; // out noise * weights
let noise_all_multisum =
noise_multisum * (1 << (2 * (precision - 1))) as f64;
let noise_ggsw_reencoding =
noise_modulus_switching + noise_all_multisum;
if noise_ggsw_reencoding > variance_max {
continue;
}
let noise_max = noise_ggsw_reencoding.max(noise_hybrid_packing);
// Shared by all pbs (like brs)
let key_switching_q = memo.key_switching.get(&macro_key).unwrap();
for &(
ks_decomposition_parameter,
(noise_keyswitch, complexity_keyswitch),
) in key_switching_q
{
let noise_max = noise_max + noise_keyswitch;
if noise_max > variance_max {
continue;
}
let complexity_all_ks =
(precision * n_inputs) as f64 * complexity_keyswitch;
let complexity_bit_extract =
complexity_bit_extract_wo_ks + complexity_all_ks;
let complexity_ggsw_reencoding =
complexity_bit_extract + complexity_circuit_bs;
let complexity =
complexity_ggsw_reencoding + complexity_multi_hybrid_packing;
if complexity > best_complexity {
// next ks.level will be even more costly
break;
}
if complexity < best_complexity {
best_complexity = complexity;
let p_error = find_p_error(kappa, variance_max, noise_max);
state.best_solution = Some(Solution {
input_lwe_dimension,
internal_ks_output_lwe_dimension: internal_dim,
ks_decomposition_level_count: ks_decomposition_parameter
.level,
ks_decomposition_base_log: ks_decomposition_parameter
.log2_base,
glwe_polynomial_size: glwe_poly_size,
glwe_dimension: glwe_dim,
br_decomposition_level_count: br_decomposition_parameter
.level,
br_decomposition_base_log: br_decomposition_parameter
.log2_base,
noise_max,
complexity,
p_error,
cb_decomposition_level_count: Some(
circuit_pbs_decomposition_parameter.level,
),
cb_decomposition_base_log: Some(
circuit_pbs_decomposition_parameter.log2_base,
),
});
}
}
}
}
}
}
}
}
state
}
// Default heuristic to split in several word
pub fn default_partitionning(precision: u64) -> Vec<u64> {
#[allow(clippy::match_same_arms)]
match precision {
1 => vec![1],
2 => vec![2],
3 => vec![2; 2],
4 => vec![3; 2],
5 => vec![3; 2],
6 => vec![3; 3],
7 => vec![3; 3],
8 => vec![3; 3],
9 => vec![4; 3],
10 => vec![4; 3],
11 => vec![4; 3],
12 => vec![4; 4],
13 => vec![4; 4],
14 => vec![4; 4],
15 => vec![4; 4],
16 => vec![5; 4],
_ => vec![5; (precision / 5) as usize],
}
}
#[allow(clippy::too_many_lines)]
pub fn optimize_one<W: UnsignedInteger>(
_sum_size: u64,
precision: u64,
security_level: u64,
noise_factor: f64,
maximum_acceptable_error_probability: f64,
glwe_log_polynomial_sizes: &[u64],
glwe_dimensions: &[u64],
internal_lwe_dimensions: &[u64],
memo_opt: &mut Option<Tab>,
) -> atomic_pattern::OptimizationState {
let partitionning = default_partitionning(precision);
let nb_words = partitionning.len() as u64;
let max_word_precision = *partitionning.iter().max().unwrap() as u64;
let log_norm = noise_factor.log2();
let n_functions = 1;
let memo = memo_opt.get_or_insert_with(|| {
tabulate_circuit_bootstrap::<W>(
security_level,
maximum_acceptable_error_probability,
glwe_log_polynomial_sizes,
glwe_dimensions,
internal_lwe_dimensions,
)
});
let result = optimise_one_with_memo::<W>(
max_word_precision,
log_norm,
security_level,
maximum_acceptable_error_probability,
glwe_log_polynomial_sizes,
glwe_dimensions,
internal_lwe_dimensions,
n_functions,
memo,
nb_words, // Tau
);
let best_solution = result.best_solution.map(|sol| atomic_pattern::Solution {
input_lwe_dimension: sol.input_lwe_dimension,
internal_ks_output_lwe_dimension: sol.internal_ks_output_lwe_dimension,
ks_decomposition_level_count: sol.ks_decomposition_level_count,
ks_decomposition_base_log: sol.ks_decomposition_base_log,
glwe_polynomial_size: sol.glwe_polynomial_size,
glwe_dimension: sol.glwe_dimension,
br_decomposition_level_count: sol.br_decomposition_level_count,
br_decomposition_base_log: sol.br_decomposition_base_log,
complexity: sol.complexity,
lut_complexity: sol.complexity,
noise_max: sol.noise_max,
p_error: sol.p_error,
});
atomic_pattern::OptimizationState {
best_solution,
count_domain: result.count_domain,
}
}