mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 03:55:04 -05:00
369 lines
13 KiB
C++
369 lines
13 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include "concretelang/ClientLib/KeySet.h"
|
|
#include "concretelang/ClientLib/CRT.h"
|
|
#include "concretelang/Common/Error.h"
|
|
#include "concretelang/Runtime/seeder.h"
|
|
#include "concretelang/Support/Error.h"
|
|
|
|
#define CAPI_ERR_TO_STRINGERROR(instr, msg) \
|
|
{ \
|
|
int err; \
|
|
instr; \
|
|
if (err != 0) { \
|
|
return concretelang::error::StringError(msg); \
|
|
} \
|
|
}
|
|
|
|
int clone_transform_lwe_secret_key_to_glwe_secret_key_u64(
|
|
DefaultEngine *default_engine, LweSecretKey64 *output_lwe_sk,
|
|
size_t poly_size, GlweSecretKey64 **output_glwe_sk) {
|
|
LweSecretKey64 *output_lwe_sk_clone = NULL;
|
|
int lwe_out_sk_clone_ok =
|
|
clone_lwe_secret_key_u64(output_lwe_sk, &output_lwe_sk_clone);
|
|
if (lwe_out_sk_clone_ok != 0) {
|
|
return 1;
|
|
}
|
|
|
|
int glwe_sk_ok =
|
|
default_engine_transform_lwe_secret_key_to_glwe_secret_key_u64(
|
|
default_engine, &output_lwe_sk_clone, poly_size, output_glwe_sk);
|
|
if (glwe_sk_ok != 0) {
|
|
return 1;
|
|
}
|
|
|
|
if (output_lwe_sk_clone != NULL) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
namespace concretelang {
|
|
namespace clientlib {
|
|
|
|
KeySet::KeySet() {
|
|
|
|
CAPI_ASSERT_ERROR(new_default_engine(best_seeder, &engine));
|
|
|
|
CAPI_ASSERT_ERROR(new_default_parallel_engine(best_seeder, &par_engine));
|
|
|
|
CAPI_ASSERT_ERROR(new_fftw_engine(&fftw_engine));
|
|
}
|
|
|
|
KeySet::~KeySet() {
|
|
for (auto it : secretKeys) {
|
|
CAPI_ASSERT_ERROR(destroy_lwe_secret_key_u64(it.second.second));
|
|
}
|
|
CAPI_ASSERT_ERROR(destroy_default_engine(engine));
|
|
CAPI_ASSERT_ERROR(destroy_fftw_engine(fftw_engine));
|
|
CAPI_ASSERT_ERROR(destroy_default_parallel_engine(par_engine));
|
|
}
|
|
|
|
outcome::checked<std::unique_ptr<KeySet>, StringError>
|
|
KeySet::generate(ClientParameters ¶ms, uint64_t seed_msb,
|
|
uint64_t seed_lsb) {
|
|
auto keySet = std::make_unique<KeySet>();
|
|
OUTCOME_TRYV(keySet->generateKeysFromParams(params, seed_msb, seed_lsb));
|
|
OUTCOME_TRYV(keySet->setupEncryptionMaterial(params, seed_msb, seed_lsb));
|
|
return std::move(keySet);
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
KeySet::setupEncryptionMaterial(ClientParameters ¶ms, uint64_t seed_msb,
|
|
uint64_t seed_lsb) {
|
|
_clientParameters = params;
|
|
|
|
// Set inputs and outputs LWE secret keys
|
|
{
|
|
for (auto param : params.inputs) {
|
|
LweSecretKeyParam secretKeyParam = {0};
|
|
LweSecretKey64 *secretKey = nullptr;
|
|
if (param.encryption.hasValue()) {
|
|
auto inputSk = this->secretKeys.find(param.encryption->secretKeyID);
|
|
if (inputSk == this->secretKeys.end()) {
|
|
return StringError("input encryption secret key (")
|
|
<< param.encryption->secretKeyID << ") does not exist ";
|
|
}
|
|
secretKeyParam = inputSk->second.first;
|
|
secretKey = inputSk->second.second;
|
|
}
|
|
std::tuple<CircuitGate, LweSecretKeyParam, LweSecretKey64 *> input = {
|
|
param, secretKeyParam, secretKey};
|
|
this->inputs.push_back(input);
|
|
}
|
|
for (auto param : params.outputs) {
|
|
LweSecretKeyParam secretKeyParam = {0};
|
|
LweSecretKey64 *secretKey = nullptr;
|
|
if (param.encryption.hasValue()) {
|
|
auto outputSk = this->secretKeys.find(param.encryption->secretKeyID);
|
|
if (outputSk == this->secretKeys.end()) {
|
|
return StringError(
|
|
"cannot find output key to generate bootstrap key");
|
|
}
|
|
secretKeyParam = outputSk->second.first;
|
|
secretKey = outputSk->second.second;
|
|
}
|
|
std::tuple<CircuitGate, LweSecretKeyParam, LweSecretKey64 *> output = {
|
|
param, secretKeyParam, secretKey};
|
|
this->outputs.push_back(output);
|
|
}
|
|
}
|
|
|
|
return outcome::success();
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
KeySet::generateKeysFromParams(ClientParameters ¶ms, uint64_t seed_msb,
|
|
uint64_t seed_lsb) {
|
|
|
|
{
|
|
// Generate LWE secret keys
|
|
for (auto secretKeyParam : params.secretKeys) {
|
|
OUTCOME_TRYV(
|
|
this->generateSecretKey(secretKeyParam.first, secretKeyParam.second));
|
|
}
|
|
}
|
|
// Generate bootstrap and keyswitch keys
|
|
{
|
|
for (auto bootstrapKeyParam : params.bootstrapKeys) {
|
|
OUTCOME_TRYV(this->generateBootstrapKey(bootstrapKeyParam.first,
|
|
bootstrapKeyParam.second));
|
|
}
|
|
for (auto keyswitchParam : params.keyswitchKeys) {
|
|
OUTCOME_TRYV(this->generateKeyswitchKey(keyswitchParam.first,
|
|
keyswitchParam.second));
|
|
}
|
|
}
|
|
return outcome::success();
|
|
}
|
|
|
|
void KeySet::setKeys(
|
|
std::map<LweSecretKeyID, std::pair<LweSecretKeyParam, LweSecretKey64 *>>
|
|
secretKeys,
|
|
std::map<LweSecretKeyID,
|
|
std::pair<BootstrapKeyParam, std::shared_ptr<LweBootstrapKey>>>
|
|
bootstrapKeys,
|
|
std::map<LweSecretKeyID,
|
|
std::pair<KeyswitchKeyParam, std::shared_ptr<LweKeyswitchKey>>>
|
|
keyswitchKeys) {
|
|
this->secretKeys = secretKeys;
|
|
this->bootstrapKeys = bootstrapKeys;
|
|
this->keyswitchKeys = keyswitchKeys;
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
KeySet::generateSecretKey(LweSecretKeyID id, LweSecretKeyParam param) {
|
|
LweSecretKey64 *sk;
|
|
CAPI_ASSERT_ERROR(default_engine_generate_new_lwe_secret_key_u64(
|
|
engine, param.dimension, &sk));
|
|
|
|
secretKeys[id] = {param, sk};
|
|
|
|
return outcome::success();
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
KeySet::generateBootstrapKey(BootstrapKeyID id, BootstrapKeyParam param) {
|
|
// Finding input and output secretKeys
|
|
auto inputSk = secretKeys.find(param.inputSecretKeyID);
|
|
if (inputSk == secretKeys.end()) {
|
|
return StringError("cannot find input key to generate bootstrap key");
|
|
}
|
|
auto outputSk = secretKeys.find(param.outputSecretKeyID);
|
|
if (outputSk == secretKeys.end()) {
|
|
return StringError("cannot find output key to generate bootstrap key");
|
|
}
|
|
// Allocate the bootstrap key
|
|
LweBootstrapKey64 *bsk;
|
|
|
|
uint64_t total_dimension = outputSk->second.first.dimension;
|
|
|
|
assert(total_dimension % param.glweDimension == 0);
|
|
|
|
uint64_t polynomialSize = total_dimension / param.glweDimension;
|
|
|
|
GlweSecretKey64 *output_glwe_sk = nullptr;
|
|
|
|
// This is not part of the C FFI but rather is a C util exposed for
|
|
// convenience in tests.
|
|
CAPI_ASSERT_ERROR(clone_transform_lwe_secret_key_to_glwe_secret_key_u64(
|
|
engine, outputSk->second.second, polynomialSize, &output_glwe_sk));
|
|
|
|
CAPI_ASSERT_ERROR(default_parallel_engine_generate_new_lwe_bootstrap_key_u64(
|
|
par_engine, inputSk->second.second, output_glwe_sk, param.baseLog,
|
|
param.level, param.variance, &bsk));
|
|
|
|
CAPI_ASSERT_ERROR(destroy_glwe_secret_key_u64(output_glwe_sk));
|
|
|
|
// Store the bootstrap key
|
|
bootstrapKeys[id] = {param, std::make_shared<LweBootstrapKey>(bsk)};
|
|
|
|
return outcome::success();
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
KeySet::generateKeyswitchKey(KeyswitchKeyID id, KeyswitchKeyParam param) {
|
|
// Finding input and output secretKeys
|
|
auto inputSk = secretKeys.find(param.inputSecretKeyID);
|
|
if (inputSk == secretKeys.end()) {
|
|
return StringError("cannot find input key to generate keyswitch key");
|
|
}
|
|
auto outputSk = secretKeys.find(param.outputSecretKeyID);
|
|
if (outputSk == secretKeys.end()) {
|
|
return StringError("cannot find output key to generate keyswitch key");
|
|
}
|
|
// Allocate the keyswitch key
|
|
LweKeyswitchKey64 *ksk;
|
|
|
|
CAPI_ASSERT_ERROR(default_engine_generate_new_lwe_keyswitch_key_u64(
|
|
engine, inputSk->second.second, outputSk->second.second, param.level,
|
|
param.baseLog, param.variance, &ksk));
|
|
|
|
// Store the keyswitch key
|
|
keyswitchKeys[id] = {param, std::make_shared<LweKeyswitchKey>(ksk)};
|
|
|
|
return outcome::success();
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
KeySet::allocate_lwe(size_t argPos, uint64_t **ciphertext, uint64_t &size) {
|
|
if (argPos >= inputs.size()) {
|
|
return StringError("allocate_lwe position of argument is too high");
|
|
}
|
|
auto inputSk = inputs[argPos];
|
|
auto encryption = std::get<0>(inputSk).encryption;
|
|
if (!encryption.hasValue()) {
|
|
return StringError("allocate_lwe argument #")
|
|
<< argPos << "is not encypeted";
|
|
}
|
|
auto numBlocks =
|
|
encryption->encoding.crt.empty() ? 1 : encryption->encoding.crt.size();
|
|
|
|
size = std::get<1>(inputSk).lweSize();
|
|
*ciphertext = (uint64_t *)malloc(sizeof(uint64_t) * size * numBlocks);
|
|
return outcome::success();
|
|
}
|
|
|
|
bool KeySet::isInputEncrypted(size_t argPos) {
|
|
return argPos < inputs.size() &&
|
|
std::get<0>(inputs[argPos]).encryption.hasValue();
|
|
}
|
|
|
|
bool KeySet::isOutputEncrypted(size_t argPos) {
|
|
return argPos < outputs.size() &&
|
|
std::get<0>(outputs[argPos]).encryption.hasValue();
|
|
}
|
|
|
|
/// Return the number of bits to represents the given value
|
|
uint64_t bitWidthOfValue(uint64_t value) { return std::ceil(std::log2(value)); }
|
|
|
|
outcome::checked<void, StringError>
|
|
KeySet::encrypt_lwe(size_t argPos, uint64_t *ciphertext, uint64_t input) {
|
|
if (argPos >= inputs.size()) {
|
|
return StringError("encrypt_lwe position of argument is too high");
|
|
}
|
|
auto inputSk = inputs[argPos];
|
|
auto encryption = std::get<0>(inputSk).encryption;
|
|
if (!encryption.hasValue()) {
|
|
return StringError("encrypt_lwe the positional argument is not encrypted");
|
|
}
|
|
auto encoding = encryption->encoding;
|
|
auto lweSecretKeyParam = std::get<1>(inputSk);
|
|
auto lweSecretKey = std::get<2>(inputSk);
|
|
// CRT encoding - N blocks with crt encoding
|
|
auto crt = encryption->encoding.crt;
|
|
if (!crt.empty()) {
|
|
// Put each decomposition into a new ciphertext
|
|
auto product = crt::productOfModuli(crt);
|
|
for (auto modulus : crt) {
|
|
auto plaintext = crt::encode(input, modulus, product);
|
|
CAPI_ASSERT_ERROR(
|
|
default_engine_discard_encrypt_lwe_ciphertext_u64_raw_ptr_buffers(
|
|
engine, lweSecretKey, ciphertext, plaintext,
|
|
encryption->variance));
|
|
|
|
ciphertext = ciphertext + lweSecretKeyParam.lweSize();
|
|
}
|
|
return outcome::success();
|
|
}
|
|
// Simple TFHE integers - 1 blocks with one padding bits
|
|
// TODO we could check if the input value is in the right range
|
|
uint64_t plaintext = input << (64 - (encryption->encoding.precision + 1));
|
|
CAPI_ASSERT_ERROR(
|
|
default_engine_discard_encrypt_lwe_ciphertext_u64_raw_ptr_buffers(
|
|
engine, lweSecretKey, ciphertext, plaintext, encryption->variance));
|
|
|
|
return outcome::success();
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
KeySet::decrypt_lwe(size_t argPos, uint64_t *ciphertext, uint64_t &output) {
|
|
if (argPos >= outputs.size()) {
|
|
return StringError("decrypt_lwe: position of argument is too high");
|
|
}
|
|
auto outputSk = outputs[argPos];
|
|
auto lweSecretKey = std::get<2>(outputSk);
|
|
auto lweSecretKeyParam = std::get<1>(outputSk);
|
|
auto encryption = std::get<0>(outputSk).encryption;
|
|
if (!encryption.hasValue()) {
|
|
return StringError("decrypt_lwe: the positional argument is not encrypted");
|
|
}
|
|
auto crt = encryption->encoding.crt;
|
|
// CRT encoding - N blocks with crt encoding
|
|
if (!crt.empty()) {
|
|
std::vector<int64_t> remainders;
|
|
// decrypt and decode remainders
|
|
for (auto modulus : crt) {
|
|
uint64_t decrypted;
|
|
CAPI_ASSERT_ERROR(
|
|
default_engine_decrypt_lwe_ciphertext_u64_raw_ptr_buffers(
|
|
engine, lweSecretKey, ciphertext, &decrypted));
|
|
|
|
auto plaintext = crt::decode(decrypted, modulus);
|
|
remainders.push_back(plaintext);
|
|
ciphertext = ciphertext + lweSecretKeyParam.lweSize();
|
|
}
|
|
// compute the inverse crt
|
|
output = crt::iCrt(crt, remainders);
|
|
return outcome::success();
|
|
}
|
|
// Simple TFHE integers - 1 blocks with one padding bits
|
|
uint64_t plaintext;
|
|
|
|
CAPI_ASSERT_ERROR(default_engine_decrypt_lwe_ciphertext_u64_raw_ptr_buffers(
|
|
engine, lweSecretKey, ciphertext, &plaintext));
|
|
|
|
// Decode
|
|
uint64_t precision = encryption->encoding.precision;
|
|
output = plaintext >> (64 - precision - 2);
|
|
auto carry = output % 2;
|
|
uint64_t mod = (((uint64_t)1) << (precision + 1));
|
|
output = ((output >> 1) + carry) % mod;
|
|
|
|
return outcome::success();
|
|
}
|
|
|
|
const std::map<LweSecretKeyID, std::pair<LweSecretKeyParam, LweSecretKey64 *>> &
|
|
KeySet::getSecretKeys() {
|
|
return secretKeys;
|
|
}
|
|
|
|
const std::map<LweSecretKeyID,
|
|
std::pair<BootstrapKeyParam, std::shared_ptr<LweBootstrapKey>>> &
|
|
KeySet::getBootstrapKeys() {
|
|
return bootstrapKeys;
|
|
}
|
|
|
|
const std::map<LweSecretKeyID,
|
|
std::pair<KeyswitchKeyParam, std::shared_ptr<LweKeyswitchKey>>> &
|
|
KeySet::getKeyswitchKeys() {
|
|
return keyswitchKeys;
|
|
}
|
|
|
|
} // namespace clientlib
|
|
} // namespace concretelang
|