Files
concrete/compiler/lib/Dialect/RT/Analysis/BufferizeDataflowTaskOps.cpp
Andi Drebes 73fd6c5fe7 refactor(compiler): FHE to TFHE: Use OpConversionPattern for dialect conversion
Use `OpConversionPattern` instead of `OpRewritePattern` for operation
conversion during dialect conversion. This makes explicit and in-place
type conversions unnecessary, since `OpConversionPattern` already
properly converts operand types and provides them to the rewrite rule
through an operation adaptor.

The main contributions of this commit are the two class templates
`TypeConvertingReinstantiationPattern` and
`GenericOneToOneOpConversionPattern`.

The former allows for the definition of a simple replacement rule that
re-instantiates an operation after the types of its operands have been
converted. This is especially useful for type-polymorphic operations
during dialect conversion.

The latter allows for the definition of patterns, where one operation
needs to be replaced with a different operation after conversion of
its operands.

The default implementations for the class templates provide
conversions rules for operations that have a generic builder method
that takes the desired return type(s), the operands and (optionally) a
set of attributes. How attributes are discarded during a conversion
(either by omitting the builder argument or by passing an empty set of
attributes) can be defined through specialization of
`ReinstantiationAttributeDismissalStrategy`.

Custom replacement rules that deviate from the scheme above should be
implemented by specializing
`TypeConvertingReinstantiationPattern::matchAndRewrite()` and
`GenericOneToOneOpConversionPattern::matchAndRewrite()`.
2023-02-01 14:27:10 +01:00

159 lines
6.7 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include <iostream>
#include <concretelang/Dialect/RT/Analysis/Autopar.h>
#include <concretelang/Dialect/RT/IR/RTDialect.h>
#include <concretelang/Dialect/RT/IR/RTOps.h>
#include <concretelang/Dialect/RT/IR/RTTypes.h>
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
#include "mlir/Dialect/Func/Transforms/Passes.h"
#include "mlir/Transforms/DialectConversion.h"
#include <concretelang/Conversion/Utils/FuncConstOpConversion.h>
#include <concretelang/Conversion/Utils/GenericOpTypeConversionPattern.h>
#include <concretelang/Conversion/Utils/Legality.h>
#include <llvm/IR/Instructions.h>
#include <mlir/Dialect/Bufferization/IR/Bufferization.h>
#include <mlir/Dialect/Bufferization/Transforms/Bufferize.h>
#include <mlir/Dialect/Bufferization/Transforms/Passes.h>
#include <mlir/Dialect/Func/IR/FuncOps.h>
#include <mlir/Dialect/MemRef/IR/MemRef.h>
#include <mlir/IR/BlockAndValueMapping.h>
#include <mlir/IR/Builders.h>
#include <mlir/Transforms/RegionUtils.h>
#define GEN_PASS_CLASSES
#include <concretelang/Dialect/RT/Analysis/Autopar.h.inc>
namespace mlir {
namespace concretelang {
namespace {
class BufferizeRTTypesConverter
: public mlir::bufferization::BufferizeTypeConverter {
public:
BufferizeRTTypesConverter() {
addConversion([&](mlir::concretelang::RT::FutureType type) {
return mlir::concretelang::RT::FutureType::get(
this->convertType(type.dyn_cast<mlir::concretelang::RT::FutureType>()
.getElementType()));
});
addConversion([&](mlir::concretelang::RT::PointerType type) {
return mlir::concretelang::RT::PointerType::get(
this->convertType(type.dyn_cast<mlir::concretelang::RT::PointerType>()
.getElementType()));
});
addConversion([&](mlir::FunctionType type) {
SignatureConversion result(type.getNumInputs());
mlir::SmallVector<mlir::Type, 1> newResults;
if (failed(this->convertSignatureArgs(type.getInputs(), result)) ||
failed(this->convertTypes(type.getResults(), newResults)))
return type;
return mlir::FunctionType::get(type.getContext(),
result.getConvertedTypes(), newResults);
});
}
};
} // namespace
namespace {
/// For documentation see Autopar.td
struct BufferizeDataflowTaskOpsPass
: public BufferizeDataflowTaskOpsBase<BufferizeDataflowTaskOpsPass> {
void runOnOperation() override {
auto module = getOperation();
auto *context = &getContext();
BufferizeRTTypesConverter typeConverter;
RewritePatternSet patterns(context);
ConversionTarget target(*context);
populateFunctionOpInterfaceTypeConversionPattern<mlir::func::FuncOp>(
patterns, typeConverter);
patterns.add<FunctionConstantOpConversion<BufferizeRTTypesConverter>>(
context, typeConverter);
target.addDynamicallyLegalDialect<mlir::func::FuncDialect>([&](Operation
*op) {
if (auto fun = dyn_cast_or_null<mlir::func::FuncOp>(op))
return typeConverter.isSignatureLegal(fun.getFunctionType()) &&
typeConverter.isLegal(&fun.getBody());
if (auto fun = dyn_cast_or_null<mlir::func::ConstantOp>(op))
return FunctionConstantOpConversion<BufferizeRTTypesConverter>::isLegal(
fun, typeConverter);
return typeConverter.isLegal(op);
});
patterns.add<
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::DataflowTaskOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::DataflowYieldOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::MakeReadyFutureOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::AwaitFutureOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::CreateAsyncTaskOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::BuildReturnPtrPlaceholderOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::DerefWorkFunctionArgumentPtrPlaceholderOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::DerefReturnPtrPlaceholderOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::WorkFunctionReturnOp>,
mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::RegisterTaskWorkFunctionOp>>(&getContext(),
typeConverter);
// Conversion of RT Dialect Ops
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::DataflowTaskOp>(target, typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::DataflowYieldOp>(target, typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::MakeReadyFutureOp>(target, typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::AwaitFutureOp>(target, typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::CreateAsyncTaskOp>(target, typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::BuildReturnPtrPlaceholderOp>(target,
typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::DerefWorkFunctionArgumentPtrPlaceholderOp>(
target, typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::DerefReturnPtrPlaceholderOp>(target,
typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::WorkFunctionReturnOp>(target, typeConverter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::RegisterTaskWorkFunctionOp>(target,
typeConverter);
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
BufferizeDataflowTaskOpsPass(bool debug) : debug(debug){};
protected:
bool debug;
};
} // end anonymous namespace
std::unique_ptr<mlir::Pass> createBufferizeDataflowTaskOpsPass(bool debug) {
return std::make_unique<BufferizeDataflowTaskOpsPass>(debug);
}
} // namespace concretelang
} // namespace mlir