Files
concrete/compiler/lib/Support/Jit.cpp
youben11 99cce18c6a feat: get RT lib path from py and use as sharedlib
Try to find the runtime library automatically (should only work on
proper installation of the package), and fail silently by not passing
any RT lib. The RT lib can also be specified manually. The RT lib will
be used as a shared library by the JIT compiler.
2021-11-12 15:06:49 +01:00

459 lines
16 KiB
C++

#include "llvm/Support/Error.h"
#include <llvm/ADT/ArrayRef.h>
#include <llvm/ADT/SmallVector.h>
#include <llvm/ADT/StringRef.h>
#include <llvm/Support/TargetSelect.h>
#include <mlir/Dialect/LLVMIR/LLVMDialect.h>
#include <mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h>
#include <zamalang/Support/Jit.h>
#include <zamalang/Support/logging.h>
namespace mlir {
namespace zamalang {
llvm::Expected<std::unique_ptr<JITLambda>>
JITLambda::create(llvm::StringRef name, mlir::ModuleOp &module,
llvm::function_ref<llvm::Error(llvm::Module *)> optPipeline,
llvm::Optional<llvm::StringRef> runtimeLibPath) {
// Looking for the function
auto rangeOps = module.getOps<mlir::LLVM::LLVMFuncOp>();
auto funcOp = llvm::find_if(rangeOps, [&](mlir::LLVM::LLVMFuncOp op) {
return op.getName() == name;
});
if (funcOp == rangeOps.end()) {
return llvm::make_error<llvm::StringError>(
"cannot find the function to JIT", llvm::inconvertibleErrorCode());
}
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
mlir::registerLLVMDialectTranslation(*module->getContext());
// Create an MLIR execution engine. The execution engine eagerly
// JIT-compiles the module. If runtimeLibPath is specified, it's passed as a
// shared library to the JIT compiler.
std::vector<llvm::StringRef> sharedLibPaths;
if (runtimeLibPath.hasValue())
sharedLibPaths.push_back(runtimeLibPath.getValue());
auto maybeEngine = mlir::ExecutionEngine::create(
module, /*llvmModuleBuilder=*/nullptr, optPipeline,
/*jitCodeGenOptLevel=*/llvm::None, sharedLibPaths);
if (!maybeEngine) {
return llvm::make_error<llvm::StringError>(
"failed to construct the MLIR ExecutionEngine",
llvm::inconvertibleErrorCode());
}
auto &engine = maybeEngine.get();
auto lambda = std::make_unique<JITLambda>((*funcOp).getType(), name);
lambda->engine = std::move(engine);
return std::move(lambda);
}
llvm::Error JITLambda::invokeRaw(llvm::MutableArrayRef<void *> args) {
// size_t nbReturn = 0;
// TODO - This check break with memref as we have 5 returns args.
// if (!this->type.getReturnType().isa<mlir::LLVM::LLVMVoidType>()) {
// nbReturn = 1;
// }
// if (this->type.getNumParams() != args.size() - nbReturn) {
// return llvm::make_error<llvm::StringError>(
// "invokeRaw: wrong number of argument",
// llvm::inconvertibleErrorCode());
// }
if (llvm::find(args, nullptr) != args.end()) {
return llvm::make_error<llvm::StringError>(
"invoke: some arguments are null", llvm::inconvertibleErrorCode());
}
return this->engine->invokePacked(this->name, args);
}
llvm::Error JITLambda::invoke(Argument &args) {
return std::move(invokeRaw(args.rawArg));
}
JITLambda::Argument::Argument(KeySet &keySet) : keySet(keySet) {
// Setting the inputs
{
auto numInputs = 0;
for (size_t i = 0; i < keySet.numInputs(); i++) {
auto offset = numInputs;
auto gate = keySet.inputGate(i);
inputGates.push_back({gate, offset});
if (keySet.inputGate(i).shape.dimensions.empty()) {
// scalar gate
numInputs = numInputs + 1;
continue;
}
// memref gate, as we follow the standard calling convention
numInputs = numInputs + 3;
// Offsets and strides are array of size N where N is the number of
// dimension of the tensor.
numInputs = numInputs + 2 * keySet.inputGate(i).shape.dimensions.size();
}
inputs = std::vector<const void *>(numInputs);
}
// Setting the outputs
{
auto numOutputs = 0;
for (size_t i = 0; i < keySet.numOutputs(); i++) {
auto offset = numOutputs;
auto gate = keySet.outputGate(i);
outputGates.push_back({gate, offset});
if (gate.shape.dimensions.empty()) {
// scalar gate
numOutputs = numOutputs + 1;
continue;
}
// memref gate, as we follow the standard calling convention
numOutputs = numOutputs + 3;
// Offsets and strides are array of size N where N is the number of
// dimension of the tensor.
numOutputs =
numOutputs + 2 * keySet.outputGate(i).shape.dimensions.size();
}
outputs = std::vector<void *>(numOutputs);
}
// The raw argument contains pointers to inputs and pointers to store the
// results
rawArg = std::vector<void *>(inputs.size() + outputs.size(), nullptr);
// Set the pointer on outputs on rawArg
for (auto i = inputs.size(); i < rawArg.size(); i++) {
rawArg[i] = &outputs[i - inputs.size()];
}
// Setup runtime context with appropriate keys
keySet.initGlobalRuntimeContext();
}
JITLambda::Argument::~Argument() {
int err;
for (auto ct : allocatedCiphertexts) {
free_lwe_ciphertext_u64(&err, ct);
}
for (auto buffer : ciphertextBuffers) {
free(buffer);
}
}
llvm::Expected<std::unique_ptr<JITLambda::Argument>>
JITLambda::Argument::create(KeySet &keySet) {
auto args = std::make_unique<JITLambda::Argument>(keySet);
return std::move(args);
}
llvm::Error JITLambda::Argument::setArg(size_t pos, uint64_t arg) {
if (pos >= inputGates.size()) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("argument index out of bound: pos=")
.concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
auto gate = inputGates[pos];
auto info = std::get<0>(gate);
auto offset = std::get<1>(gate);
// Check is the argument is a scalar
if (!info.shape.dimensions.empty()) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("argument is not a scalar: pos=").concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
// If argument is not encrypted, just save.
if (!info.encryption.hasValue()) {
inputs[offset] = (void *)arg;
rawArg[offset] = &inputs[offset];
return llvm::Error::success();
}
// Else if is encryted, allocate ciphertext and encrypt.
LweCiphertext_u64 *ctArg;
if (auto err = this->keySet.allocate_lwe(pos, &ctArg)) {
return std::move(err);
}
allocatedCiphertexts.push_back(ctArg);
if (auto err = this->keySet.encrypt_lwe(pos, ctArg, arg)) {
return std::move(err);
}
inputs[offset] = ctArg;
rawArg[offset] = &inputs[offset];
return llvm::Error::success();
}
llvm::Error JITLambda::Argument::setArg(size_t pos, size_t width,
const void *data,
llvm::ArrayRef<int64_t> shape) {
auto gate = inputGates[pos];
auto info = std::get<0>(gate);
auto offset = std::get<1>(gate);
// Check if the width is compatible
// TODO - I found this rules empirically, they are a spec somewhere?
if (info.shape.width <= 8 && width != 8) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("argument width should be 8: pos=")
.concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
if (info.shape.width > 8 && info.shape.width <= 16 && width != 16) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("argument width should be 16: pos=")
.concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
if (info.shape.width > 16 && info.shape.width <= 32 && width != 32) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("argument width should be 32: pos=")
.concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
if (info.shape.width > 32 && info.shape.width <= 64 && width != 64) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("argument width should be 64: pos=")
.concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
if (info.shape.width > 64) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("argument width not supported: pos=")
.concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
// Check the size
if (info.shape.dimensions.empty()) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("argument is not a vector: pos=").concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
if (shape.size() != info.shape.dimensions.size()) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("tensor argument #")
.concat(llvm::Twine(pos))
.concat(" has not the expected number of dimension, got ")
.concat(llvm::Twine(shape.size()))
.concat(" expected ")
.concat(llvm::Twine(info.shape.dimensions.size())),
llvm::inconvertibleErrorCode());
}
for (size_t i = 0; i < shape.size(); i++) {
if (shape[i] != info.shape.dimensions[i]) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("tensor argument #")
.concat(llvm::Twine(pos))
.concat(" has not the expected dimension #")
.concat(llvm::Twine(i))
.concat(" , got ")
.concat(llvm::Twine(shape[i]))
.concat(" expected ")
.concat(llvm::Twine(info.shape.dimensions[i])),
llvm::inconvertibleErrorCode());
}
}
// If argument is not encrypted, just save with the right calling convention.
if (info.encryption.hasValue()) {
// Else if is encrypted
// For moment we support only 8 bits inputs
const uint8_t *data8 = (const uint8_t *)data;
if (width != 8) {
return llvm::make_error<llvm::StringError>(
llvm::Twine(
"argument width > 8 for encrypted gates are not supported: pos=")
.concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
// Allocate a buffer for ciphertexts.
auto ctBuffer = (LweCiphertext_u64 **)malloc(info.shape.size *
sizeof(LweCiphertext_u64 *));
ciphertextBuffers.push_back(ctBuffer);
// Allocate ciphertexts and encrypt
for (size_t i = 0; i < info.shape.size; i++) {
if (auto err = this->keySet.allocate_lwe(pos, &ctBuffer[i])) {
return std::move(err);
}
allocatedCiphertexts.push_back(ctBuffer[i]);
if (auto err = this->keySet.encrypt_lwe(pos, ctBuffer[i], data8[i])) {
return std::move(err);
}
}
// Replace the data by the buffer to ciphertext
data = (void *)ctBuffer;
}
// Set the buffer as the memref calling convention expect.
// allocated
inputs[offset] =
(void *)0; // Indicates that it's not allocated by the MLIR program
rawArg[offset] = &inputs[offset];
offset++;
// aligned
inputs[offset] = data;
rawArg[offset] = &inputs[offset];
offset++;
// offset
inputs[offset] = (void *)0;
rawArg[offset] = &inputs[offset];
offset++;
// sizes is an array of size equals to numDim
for (size_t i = 0; i < shape.size(); i++) {
inputs[offset] = (void *)shape[i];
rawArg[offset] = &inputs[offset];
offset++;
}
// strides is an array of size equals to numDim
for (size_t i = 0; i < shape.size(); i++) {
inputs[offset] = (void *)0;
rawArg[offset] = &inputs[offset];
offset++;
}
return llvm::Error::success();
}
llvm::Error JITLambda::Argument::getResult(size_t pos, uint64_t &res) {
auto gate = outputGates[pos];
auto info = std::get<0>(gate);
auto offset = std::get<1>(gate);
// Check is the argument is a scalar
if (info.shape.size != 0) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("output is not a scalar, pos=").concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
// If result is not encrypted, just set the result
if (!info.encryption.hasValue()) {
res = (uint64_t)(outputs[offset]);
return llvm::Error::success();
}
// Else if is encryted, decrypt
LweCiphertext_u64 *ct = (LweCiphertext_u64 *)(outputs[offset]);
if (auto err = this->keySet.decrypt_lwe(pos, ct, res)) {
return std::move(err);
}
return llvm::Error::success();
}
// Returns the number of elements of the result vector at position
// `pos` or an error if the result is a scalar value
llvm::Expected<size_t> JITLambda::Argument::getResultVectorSize(size_t pos) {
auto gate = outputGates[pos];
auto info = std::get<0>(gate);
if (info.shape.size == 0) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Result at pos %zu is not a tensor", pos);
}
return info.shape.size;
}
// Returns the dimensions of the result tensor at position `pos` or
// an error if the result is a scalar value
llvm::Expected<std::vector<int64_t>>
JITLambda::Argument::getResultDimensions(size_t pos) {
auto gate = outputGates[pos];
auto info = std::get<0>(gate);
if (info.shape.size == 0) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Result at pos %zu is not a tensor", pos);
}
return info.shape.dimensions;
}
llvm::Expected<enum JITLambda::Argument::ResultType>
JITLambda::Argument::getResultType(size_t pos) {
if (pos >= outputGates.size()) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Requesting type for result at index %zu, "
"but lambda only generates %zu results",
pos, outputGates.size());
}
auto gate = outputGates[pos];
auto info = std::get<0>(gate);
if (info.shape.size == 0) {
return ResultType::SCALAR;
} else {
return ResultType::TENSOR;
}
}
llvm::Expected<size_t> JITLambda::Argument::getResultWidth(size_t pos) {
if (pos >= outputGates.size()) {
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Requesting width for result at index %zu, "
"but lambda only generates %zu results",
pos, outputGates.size());
}
auto gate = outputGates[pos];
auto info = std::get<0>(gate);
// Encrypted values are always returned as 64-bit values for now
if (info.encryption.hasValue())
return 64;
else
return info.shape.width;
}
llvm::Error JITLambda::Argument::getResult(size_t pos, void *res,
size_t elementSize,
size_t numElements) {
auto gate = outputGates[pos];
auto info = std::get<0>(gate);
auto offset = std::get<1>(gate);
// Check is the argument is a scalar
if (info.shape.dimensions.empty()) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("output is not a tensor, pos=").concat(llvm::Twine(pos)),
llvm::inconvertibleErrorCode());
}
// Check is the argument is a scalar
if (info.shape.size != numElements) {
return llvm::make_error<llvm::StringError>(
llvm::Twine("result #")
.concat(llvm::Twine(pos))
.concat(" has not the expected size, got ")
.concat(llvm::Twine(numElements))
.concat(" expect ")
.concat(llvm::Twine(info.shape.size)),
llvm::inconvertibleErrorCode());
}
// Get the values as the memref calling convention expect.
// aligned
uint8_t *alignedBytes = static_cast<uint8_t *>(outputs[offset + 1]);
uint8_t *resBytes = static_cast<uint8_t *>(res);
if (!info.encryption.hasValue()) {
// just copy values
for (size_t i = 0; i < numElements; i++) {
for (size_t j = 0; j < elementSize; j++) {
*resBytes = *alignedBytes;
resBytes++;
alignedBytes++;
}
}
} else {
// decrypt and fill the result buffer
for (size_t i = 0; i < numElements; i++) {
LweCiphertext_u64 *ct = ((LweCiphertext_u64 **)alignedBytes)[i];
if (auto err = this->keySet.decrypt_lwe(pos, ct, ((uint64_t *)res)[i])) {
return std::move(err);
}
}
}
return llvm::Error::success();
}
} // namespace zamalang
} // namespace mlir