Files
concrete/compilers/concrete-compiler/compiler/lib/Runtime/GPUDFG.cpp

1453 lines
58 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include <atomic>
#include <cstdarg>
#include <err.h>
#include <hwloc.h>
#include <iostream>
#include <list>
#include <memory>
#include <numeric>
#include <queue>
#include <thread>
#include <utility>
#include <vector>
#include <concretelang/ClientLib/Types.h>
#include <concretelang/Runtime/stream_emulator_api.h>
#include <concretelang/Runtime/wrappers.h>
#ifdef CONCRETELANG_CUDA_SUPPORT
#include "bootstrap.h"
#include "device.h"
#include "keyswitch.h"
#include "linear_algebra.h"
using MemRef2 = concretelang::clientlib::MemRefDescriptor<2>;
using RuntimeContext = mlir::concretelang::RuntimeContext;
namespace mlir {
namespace concretelang {
namespace gpu_dfg {
namespace {
// When not using all accelerators on the machine, we distribute work
// by assigning the default accelerator for each SDFG to next
// round-robin.
static std::atomic<size_t> next_device = {0};
// Resources available (or set as requested by user through
// environment variables) on the machine. Defaults to using all
// available.
static size_t num_devices = 0; // Set SDFG_NUM_GPUS to configure
static size_t num_cores = 1; // Set OMP_NUM_THREADS to configure (as
// this is linked to loop parallelism)
// By default we distribute batched ops across all available GPUs
// (or value of environment variable SDFG_NUM_GPUS whichever is
// lower). Set SDFG_DISTRIBUTE_BATCH_OPS=OFF to inhibit this.
static bool dont_distribute_batched_ops = false;
// Get the byte size of a rank 2 MemRef
static inline size_t memref_get_data_size(MemRef2 &m) {
return m.sizes[0] * m.sizes[1] * sizeof(uint64_t);
}
// Copy contiguous rank 2 MemRef 'in' to 'out'
static inline void memref_copy_contiguous(MemRef2 &out, MemRef2 &in) {
assert(in.sizes[0] == out.sizes[0] && in.sizes[1] == out.sizes[1] &&
"memref_copy_contiguous sizes differ");
assert(in.strides[0] == out.strides[0] && in.strides[1] == out.strides[1] &&
"memref_copy_contiguous strides differ");
assert(in.strides[0] == in.sizes[1] && in.strides[1] == 1 &&
"memref_copy_contiguous strides not compatible with contiguous "
"storage.");
memcpy(out.aligned + out.offset, in.aligned + in.offset,
memref_get_data_size(in));
}
// Copy contiguous rank 2 MemRef to a newly allocated, returned MemRef
static inline MemRef2 memref_copy_alloc(MemRef2 &m) {
uint64_t *data = (uint64_t *)malloc(memref_get_data_size(m));
MemRef2 ret = {
data, data, 0, {m.sizes[0], m.sizes[1]}, {m.strides[0], m.strides[1]}};
memref_copy_contiguous(ret, m);
return ret;
}
// Parameter storage for KS and BS processes
struct Void {};
union Param {
Void _;
uint32_t val;
};
union Context {
Void _;
RuntimeContext *val;
};
// Tracking locations and state for dependences: location is either an
// integer >= 0 corresponding to the device/accelerator index on the
// machine or -1/-2 when it is only available on the host or is split
// across multiple locations.
static const int32_t host_location = -1;
static const int32_t split_location = -2;
// Similarly dependence chunks are either indexed (which does not
// always correlate to the device index on which they are located) or
// this dependence is split further.
static const int32_t single_chunk = -1;
static const int32_t split_chunks = -2;
struct Stream;
struct Dependence;
// Track buffer/scratchpad for the PBS to avoid re-allocating it on
// the device. Reuse where possible or reallocate if a larger buffer
// is required.
struct PBS_buffer {
PBS_buffer(void *stream, uint32_t gpu_idx, uint32_t glwe_dimension,
uint32_t polynomial_size, uint32_t input_lwe_ciphertext_count)
: max_pbs_buffer_samples(input_lwe_ciphertext_count),
glwe_dim(glwe_dimension), poly_size(polynomial_size),
gpu_stream(stream), gpu_index(gpu_idx) {
scratch_cuda_bootstrap_amortized_64(
gpu_stream, gpu_index, &pbs_buffer, glwe_dim, poly_size,
max_pbs_buffer_samples, cuda_get_max_shared_memory(gpu_index), true);
}
~PBS_buffer() {
cleanup_cuda_bootstrap_amortized(gpu_stream, gpu_index, &pbs_buffer);
}
int8_t *get_pbs_buffer(void *stream, uint32_t gpu_idx,
uint32_t glwe_dimension, uint32_t polynomial_size,
uint32_t input_lwe_ciphertext_count) {
assert(glwe_dimension == glwe_dim);
assert(polynomial_size == poly_size);
assert(input_lwe_ciphertext_count <= max_pbs_buffer_samples);
assert(stream == gpu_stream);
assert(gpu_idx == gpu_index);
return pbs_buffer;
}
private:
int8_t *pbs_buffer;
uint32_t max_pbs_buffer_samples;
uint32_t glwe_dim;
uint32_t poly_size;
void *gpu_stream;
uint32_t gpu_index;
};
// Keep track of the GPU/CUDA streams used for each accelerator and
// associated PBS buffer.
struct GPU_state {
uint32_t gpu_idx;
void *gpu_stream;
PBS_buffer *pbs_buffer;
GPU_state(uint32_t idx)
: gpu_idx(idx), gpu_stream(nullptr), pbs_buffer(nullptr) {}
~GPU_state() {
if (pbs_buffer != nullptr)
delete pbs_buffer;
if (gpu_stream != nullptr)
cuda_destroy_stream((cudaStream_t *)gpu_stream, gpu_idx);
}
inline int8_t *get_pbs_buffer(uint32_t glwe_dimension,
uint32_t polynomial_size,
uint32_t input_lwe_ciphertext_count) {
if (pbs_buffer == nullptr)
pbs_buffer = new PBS_buffer(get_gpu_stream(), gpu_idx, glwe_dimension,
polynomial_size, input_lwe_ciphertext_count);
return pbs_buffer->get_pbs_buffer(get_gpu_stream(), gpu_idx, glwe_dimension,
polynomial_size,
input_lwe_ciphertext_count);
}
inline void *get_gpu_stream() {
if (gpu_stream == nullptr)
gpu_stream = cuda_create_stream(gpu_idx);
return gpu_stream;
}
};
// Track resources required for the execution of a single DFG,
// including the GPU states of devices involved in its execution,
// streams and memory allocated which depends on execution progress on
// accelerators before it can be freed. As execution on accelerators
// is asynchronous, this must wait for the next synchronization point.
struct GPU_DFG {
std::vector<GPU_state> gpus;
uint32_t gpu_idx;
void *gpu_stream;
GPU_DFG(uint32_t idx) : gpu_idx(idx), pbs_buffer(nullptr) {
for (uint32_t i = 0; i < num_devices; ++i)
gpus.push_back(std::move(GPU_state(i)));
gpu_stream = gpus[idx].get_gpu_stream();
}
~GPU_DFG() {
free_streams();
free_stream_order_dependent_data();
}
inline void register_stream(Stream *s) { streams.push_back(s); }
inline void register_stream_order_dependent_allocation(void *p) {
to_free_list.push_back(p);
}
inline void free_stream_order_dependent_data() {
for (auto p : to_free_list)
free(p);
to_free_list.clear();
}
inline int8_t *get_pbs_buffer(uint32_t glwe_dimension,
uint32_t polynomial_size,
uint32_t input_lwe_ciphertext_count) {
if (pbs_buffer == nullptr) {
int8_t *ret = gpus[gpu_idx].get_pbs_buffer(
glwe_dimension, polynomial_size, input_lwe_ciphertext_count);
pbs_buffer = gpus[gpu_idx].pbs_buffer;
return ret;
}
return pbs_buffer->get_pbs_buffer(gpu_stream, gpu_idx, glwe_dimension,
polynomial_size,
input_lwe_ciphertext_count);
}
void free_streams();
inline void *get_gpu_stream(int32_t loc) {
if (loc < 0)
return nullptr;
return gpus[loc].get_gpu_stream();
}
private:
std::list<void *> to_free_list;
std::list<Stream *> streams;
PBS_buffer *pbs_buffer;
};
// Dependences track the location and state of each block of memory
// used as input/output to processes to allow either moving it on/off
// devices or determining when deallocation is possible.
struct Dependence {
int32_t location;
MemRef2 host_data;
void *device_data;
bool onHostReady;
bool hostAllocated;
int32_t chunk_id;
std::vector<Dependence *> chunks;
bool used;
Dependence(int32_t l, MemRef2 hd, void *dd, bool ohr, bool alloc = false,
int32_t chunk_id = single_chunk)
: location(l), host_data(hd), device_data(dd), onHostReady(ohr),
hostAllocated(alloc), chunk_id(chunk_id), used(false) {}
Dependence(int32_t l, uint64_t val, void *dd, bool ohr, bool alloc = false,
int32_t chunk_id = single_chunk)
: location(l), device_data(dd), onHostReady(ohr), hostAllocated(alloc),
chunk_id(chunk_id), used(false) {
*host_data.aligned = val;
}
// Split a dependence into a number of chunks either to run on
// multiple GPUs or execute concurrently on the host.
void split_dependence(size_t num_chunks, size_t chunk_dim, bool constant) {
assert(onHostReady && "Cannot split dependences located on a device.");
if (location == split_location) {
if (num_chunks != chunks.size())
warnx("WARNING: requesting to split dependence across different number "
"of chunks (%lu) than it already is split (%lu) which would "
"require remapping. This is not supported.",
num_chunks, chunks.size());
return;
}
size_t num_samples = host_data.sizes[chunk_dim];
assert(num_samples > 0);
// If this is a constant (same data for each chunk), then copy a
// descriptor corresponding to the whole dependence for each
// chunk.
if (constant) {
for (size_t i = 0; i < num_chunks; ++i) {
MemRef2 m = host_data;
m.allocated = nullptr;
chunks.push_back(
new Dependence(host_location, m, nullptr, onHostReady, false, i));
}
return;
}
size_t chunk_size = num_samples / num_chunks;
size_t chunk_remainder = num_samples % num_chunks;
uint64_t offset = 0;
for (size_t i = 0; i < num_chunks; ++i) {
size_t chunk_size_ = (i < chunk_remainder) ? chunk_size + 1 : chunk_size;
MemRef2 m = host_data;
m.sizes[chunk_dim] = chunk_size_;
m.offset = offset + host_data.offset;
void *dd = (device_data == nullptr) ? device_data
: (uint64_t *)device_data + offset;
offset += chunk_size_ * host_data.strides[chunk_dim];
chunks.push_back(new Dependence(location, m, dd, onHostReady, false, i));
}
chunk_id = split_chunks;
location = split_location;
}
inline void free_data(GPU_DFG *dfg, bool immediate = false) {
if (location >= 0 && device_data != nullptr) {
cuda_drop_async(device_data,
(cudaStream_t *)dfg->get_gpu_stream(location), location);
}
if (onHostReady && host_data.allocated != nullptr && hostAllocated) {
// As streams are not synchronized aside from the GET operation,
// we cannot free host-side data until after the synchronization
// point as it could still be used by an asynchronous operation.
if (immediate)
free(host_data.allocated);
else
dfg->register_stream_order_dependent_allocation(host_data.allocated);
}
for (auto c : chunks)
c->free_data(dfg, immediate);
chunks.clear();
delete (this);
}
};
// Set of input/output streams required to execute a process'
// activation, along with any parameters (for KS / BS) and the
// associated work-function.
struct Process {
std::vector<Stream *> input_streams;
std::vector<Stream *> output_streams;
GPU_DFG *dfg;
Param level;
Param base_log;
Param input_lwe_dim;
Param output_lwe_dim;
Param poly_size;
Param glwe_dim;
Param sk_index;
Param output_size;
Context ctx;
void (*fun)(Process *, int32_t, uint64_t *);
char name[80];
bool batched_process;
};
void memref_keyswitch_lwe_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr);
void memref_bootstrap_lwe_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr);
void memref_add_lwe_ciphertexts_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr);
void memref_add_plaintext_lwe_ciphertext_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr);
void memref_mul_cleartext_lwe_ciphertext_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr);
void memref_negate_lwe_ciphertext_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr);
static inline void schedule_kernel(Process *p, uint32_t loc,
uint64_t *out_ptr) {
p->fun(p, loc, out_ptr);
}
struct Stream {
Dependence *dep;
Dependence *saved_dependence;
stream_type type;
Process *producer;
std::vector<Process *> consumers;
GPU_DFG *dfg;
bool batched_stream;
bool const_stream; // When a batched op uses the same value on this
// stream for all ops
bool ct_stream;
bool pt_stream;
Stream(stream_type t)
: dep(nullptr), type(t), producer(nullptr), dfg(nullptr),
batched_stream(false), const_stream(false), ct_stream(false),
pt_stream(false) {}
~Stream() {
if (dep != nullptr)
dep->free_data(dfg);
if (producer != nullptr)
delete producer;
}
void put(Dependence *d) {
// If a dependence was already present, schedule deallocation.
if (dep != nullptr)
dep->free_data(dfg);
dep = d;
}
void eager_dependence_deallocation() {
// If there's no producer process for this stream, it is fed by
// the control program - nothing to do
if (producer == nullptr)
return;
// Recursively go up the DFG to check if new data is available
for (auto s : producer->input_streams)
s->eager_dependence_deallocation();
if (dep != nullptr) {
dep->free_data(dfg, true);
dep = nullptr;
}
}
// For a given dependence, traverse the DFG backwards to extract the lattice
// of kernels required to execute to produce this data
void extract_producing_graph(std::list<Process *> &queue) {
// If there's no producer process for this stream, it is fed by
// the control program - nothing to do
if (producer == nullptr) {
assert(dep != nullptr && "Data missing on control program stream.");
return;
}
// Recursively go up the DFG to check if new data is available
for (auto s : producer->input_streams)
s->extract_producing_graph(queue);
// Check if any of the inputs have changed - and if so recompute
// this value. Do not recompute if no changes.
for (auto s : producer->input_streams)
if (dep == nullptr || s->dep->used == false) {
queue.push_back(producer);
break;
}
}
void schedule_work(MemRef2 &out) {
std::list<Process *> queue;
extract_producing_graph(queue);
if (queue.empty())
return;
// TODO : replace with on-cpu execution, see if can be parallelised
// Do this for subgraphs that don't use BSes
bool is_batched_subgraph = false;
bool subgraph_bootstraps = false;
for (auto p : queue) {
is_batched_subgraph |= p->batched_process;
subgraph_bootstraps |= (p->fun == memref_bootstrap_lwe_u64_process);
}
// If this subgraph is not batched, then use this DFG's allocated
// GPU to offload to.
if (!is_batched_subgraph) {
for (auto p : queue)
schedule_kernel(p, (subgraph_bootstraps) ? dfg->gpu_idx : host_location,
nullptr);
return;
}
// Identify all inputs to these processes that are not also
// outputs (i.e. data not produced within this subgraph) - and
// outputs of the subgraph.
std::list<Stream *> inputs;
std::list<Stream *> inputs_all;
std::list<Stream *> outputs;
std::list<Stream *> intermediate_values;
for (auto p : queue) {
inputs.insert(inputs.end(), p->input_streams.begin(),
p->input_streams.end());
outputs.insert(outputs.end(), p->output_streams.begin(),
p->output_streams.end());
}
inputs.sort();
inputs.unique();
inputs_all = inputs;
outputs.sort();
outputs.unique();
intermediate_values = outputs;
for (auto o : outputs)
inputs.remove(o);
for (auto i : inputs_all)
outputs.remove(i);
for (auto o : outputs)
intermediate_values.remove(o);
assert(!inputs.empty() && !outputs.empty());
// Decide on number of chunks to split -- TODO: refine this
size_t mem_per_sample = 0;
size_t const_mem_per_sample = 0;
size_t num_samples = 1;
size_t num_real_inputs = 0;
auto add_size = [&](Stream *s) {
// Const streams data is required in whole for each computation,
// we treat this separately as it can be substantial.
if (s->const_stream) {
const_mem_per_sample += memref_get_data_size(s->dep->host_data);
return;
}
// If this is a ciphertext
if (s->ct_stream) {
mem_per_sample += s->dep->host_data.sizes[1] * sizeof(uint64_t);
num_real_inputs++;
if (s->dep->host_data.sizes[0] > num_samples)
num_samples = s->dep->host_data.sizes[0];
} else {
mem_per_sample += sizeof(uint64_t);
}
};
for (auto i : inputs)
add_size(i);
// Approximate the memory required for intermediate values and outputs
mem_per_sample += mem_per_sample *
(outputs.size() + intermediate_values.size()) /
(num_real_inputs ? num_real_inputs : 1);
// If the subgraph does not have sufficient computational
// intensity (which we approximate by whether it bootstraps), then
// we assume (FIXME- confirm with profiling) that it is not
// beneficial to offload to GPU.
if (!subgraph_bootstraps) {
// TODO: We can split up the chunk into enough pieces to run across
// the host cores
for (auto p : queue) {
schedule_kernel(p, host_location, nullptr);
}
// We will assume that only one subgraph is being processed per
// DFG at a time, so we can safely free these here.
dfg->free_stream_order_dependent_data();
return;
} // else
// Do schedule on GPUs
size_t gpu_free_mem;
size_t gpu_total_mem;
auto status = cudaMemGetInfo(&gpu_free_mem, &gpu_total_mem);
assert(status == cudaSuccess);
// TODO - for now assume each device on the system has roughly same
// available memory.
size_t available_mem = gpu_free_mem;
// Further assume (FIXME) that kernel execution requires twice as much
// memory per sample
size_t num_samples_per_chunk =
(available_mem - const_mem_per_sample) / (mem_per_sample * 2);
size_t num_chunks = num_samples / num_samples_per_chunk +
((num_samples % num_samples_per_chunk) ? 1 : 0);
// If we don't have enough samples, restrict the number of devices to use
int32_t num_devices_to_use =
(num_devices < num_samples) ? num_devices : num_samples;
// Make number of chunks multiple of number of devices.
num_chunks = (num_chunks / num_devices_to_use +
((num_chunks % num_devices_to_use) ? 1 : 0)) *
num_devices_to_use;
int32_t target_device = 0;
for (auto i : inputs) {
i->dep->split_dependence(num_chunks, (i->ct_stream) ? 0 : 1,
i->const_stream);
// Keep the original dependence as it may be required as input
// outside of this subgraph.
i->dep->used = true;
i->saved_dependence = i->dep;
// Setting this to null prevents deallocation of the saved dependence
i->dep = nullptr;
}
// Prepare space for writing outputs
for (auto o : outputs) {
assert(o->batched_stream && o->ct_stream &&
"Only operations with ciphertext output supported.");
MemRef2 output = out;
size_t data_size = memref_get_data_size(out);
output.allocated = output.aligned = (uint64_t *)malloc(data_size);
output.offset = 0;
o->saved_dependence = new Dependence(host_location, output, nullptr, true,
true, single_chunk);
}
for (size_t chunk = 0; chunk < num_chunks; chunk += num_devices_to_use) {
for (size_t c = chunk; c < chunk + num_devices_to_use; ++c) {
for (auto i : inputs)
i->put(i->saved_dependence->chunks[c]);
for (auto p : queue) {
schedule_kernel(p, target_device, nullptr);
}
for (auto o : outputs) {
o->saved_dependence->chunks.push_back(o->dep);
o->dep = nullptr;
}
target_device = (target_device + 1) % num_devices;
}
// Once we've scheduled work on all devices, we can go gather up the
// outputs
for (auto o : outputs) {
for (auto d : o->saved_dependence->chunks) {
// Write out the piece in the final target dependence
size_t csize = memref_get_data_size(d->host_data);
cuda_memcpy_async_to_cpu(
((char *)o->saved_dependence->host_data.aligned) +
o->saved_dependence->host_data.offset,
d->device_data, csize,
(cudaStream_t *)dfg->get_gpu_stream(d->location), d->location);
d->free_data(dfg);
o->saved_dependence->host_data.offset += csize;
}
o->saved_dependence->chunks.clear();
}
}
// Restore the saved_dependence and deallocate the last input chunks.
for (auto i : inputs) {
i->put(i->saved_dependence);
i->dep->chunks.clear();
i->saved_dependence = nullptr;
}
for (auto o : outputs) {
o->saved_dependence->host_data.offset = 0;
o->put(o->saved_dependence);
o->saved_dependence = nullptr;
}
// Force deallocation and clearing of all inner dependences which
// are invalid outside of this chunking context.
for (auto iv : intermediate_values)
iv->put(nullptr);
}
Dependence *get_on_host(MemRef2 &out) {
schedule_work(out);
assert(dep != nullptr && "GET on empty stream not allowed.");
dep->used = true;
// If this was already copied to host, copy out
if (dep->onHostReady) {
memref_copy_contiguous(out, dep->host_data);
return dep;
} else if (dep->location == split_location) {
char *pos = (char *)(out.aligned + out.offset);
// dep->chunks.sort(order_dependence_chunks);
std::list<int32_t> devices_used;
for (auto c : dep->chunks) {
size_t data_size = memref_get_data_size(c->host_data);
cuda_memcpy_async_to_cpu(
pos, c->device_data, data_size,
(cudaStream_t *)dfg->get_gpu_stream(c->location), c->location);
pos += data_size;
devices_used.push_back(c->location);
}
// We should only synchronize devices that had data chunks
devices_used.sort();
devices_used.unique();
for (auto i : devices_used)
cudaStreamSynchronize(*(cudaStream_t *)dfg->get_gpu_stream(i));
} else {
size_t data_size = memref_get_data_size(dep->host_data);
cuda_memcpy_async_to_cpu(out.aligned + out.offset, dep->device_data,
data_size, (cudaStream_t *)dfg->gpu_stream,
dep->location);
cudaStreamSynchronize(*(cudaStream_t *)dfg->gpu_stream);
}
// After this synchronization point, all of the host-side
// allocated memory can be freed as we know all asynchronous
// operations have finished.
dfg->free_stream_order_dependent_data();
if (!dep->hostAllocated)
dep->host_data = memref_copy_alloc(out);
dep->onHostReady = true;
dep->hostAllocated = true;
return dep;
}
Dependence *get(int32_t location, size_t num_chunks = 1) {
assert(dep != nullptr && "Dependence could not be computed.");
dep->used = true;
if (location == host_location) {
if (dep->onHostReady)
return dep;
size_t data_size = memref_get_data_size(dep->host_data);
dep->host_data.allocated = dep->host_data.aligned =
(uint64_t *)malloc(data_size);
dep->hostAllocated = true;
get_on_host(dep->host_data);
return dep;
} else if (location == split_location) {
if (dep->location == host_location && dep->onHostReady) {
dep->split_dependence(num_chunks, 0, false);
for (auto c : dep->chunks) {
assert(c->chunk_id >= 0);
c->location = c->chunk_id % num_devices;
size_t data_size = memref_get_data_size(c->host_data);
c->device_data = cuda_malloc_async(
data_size, (cudaStream_t *)dfg->get_gpu_stream(c->location),
c->location);
cuda_memcpy_async_to_gpu(
c->device_data, c->host_data.aligned + c->host_data.offset,
data_size, (cudaStream_t *)dfg->get_gpu_stream(c->location),
c->location);
}
} else {
assert(dep->location == split_location);
}
return dep;
} else {
// In case this dependence is needed on a single device
if (dep->location == location)
return dep;
assert(dep->onHostReady &&
"Device-to-device data transfers not supported yet.");
size_t data_size = memref_get_data_size(dep->host_data);
dep->device_data = cuda_malloc_async(
data_size, (cudaStream_t *)dfg->get_gpu_stream(location), location);
cuda_memcpy_async_to_gpu(
dep->device_data, dep->host_data.aligned + dep->host_data.offset,
data_size, (cudaStream_t *)dfg->get_gpu_stream(location), location);
dep->location = location;
return dep;
}
}
};
void GPU_DFG::free_streams() {
streams.sort();
streams.unique();
for (auto s : streams)
delete s;
}
static inline mlir::concretelang::gpu_dfg::Process *
make_process_1_1(void *dfg, void *sin1, void *sout,
void (*fun)(Process *, int32_t, uint64_t *)) {
mlir::concretelang::gpu_dfg::Process *p =
new mlir::concretelang::gpu_dfg::Process;
mlir::concretelang::gpu_dfg::Stream *s1 =
(mlir::concretelang::gpu_dfg::Stream *)sin1;
mlir::concretelang::gpu_dfg::Stream *so =
(mlir::concretelang::gpu_dfg::Stream *)sout;
p->input_streams.push_back(s1);
p->dfg = (GPU_DFG *)dfg;
p->fun = fun;
p->output_streams.push_back(so);
s1->consumers.push_back(p);
so->producer = p;
so->dfg = s1->dfg = (GPU_DFG *)dfg;
p->dfg->register_stream(s1);
p->dfg->register_stream(so);
p->batched_process = s1->batched_stream;
return p;
}
static inline mlir::concretelang::gpu_dfg::Process *
make_process_2_1(void *dfg, void *sin1, void *sin2, void *sout,
void (*fun)(Process *, int32_t, uint64_t *)) {
mlir::concretelang::gpu_dfg::Process *p =
new mlir::concretelang::gpu_dfg::Process;
mlir::concretelang::gpu_dfg::Stream *s1 =
(mlir::concretelang::gpu_dfg::Stream *)sin1;
mlir::concretelang::gpu_dfg::Stream *s2 =
(mlir::concretelang::gpu_dfg::Stream *)sin2;
mlir::concretelang::gpu_dfg::Stream *so =
(mlir::concretelang::gpu_dfg::Stream *)sout;
p->input_streams.push_back(s1);
p->input_streams.push_back(s2);
p->dfg = (GPU_DFG *)dfg;
p->fun = fun;
p->output_streams.push_back(so);
s1->consumers.push_back(p);
s2->consumers.push_back(p);
so->producer = p;
so->dfg = s1->dfg = s2->dfg = (GPU_DFG *)dfg;
p->dfg->register_stream(s1);
p->dfg->register_stream(s2);
p->dfg->register_stream(so);
p->batched_process = s1->batched_stream;
return p;
}
[[maybe_unused]] static void sdfg_gpu_debug_print_mref(const char *c,
MemRef2 m) {
std::cout << c << " : " << m.allocated << ", " << m.aligned << ", "
<< m.offset << ", [" << m.sizes[0] << ", " << m.sizes[1] << "], ["
<< m.strides[0] << ", " << m.strides[1] << "]\n";
}
[[maybe_unused]] static MemRef2 sdfg_gpu_debug_dependence(Dependence *d,
cudaStream_t *s) {
if (d->onHostReady)
return d->host_data;
size_t data_size = memref_get_data_size(d->host_data);
uint64_t *data = (uint64_t *)malloc(data_size);
MemRef2 ret = {data,
data,
0,
{d->host_data.sizes[0], d->host_data.sizes[1]},
{d->host_data.strides[0], d->host_data.strides[1]}};
cuda_memcpy_async_to_cpu(data, d->device_data, data_size, s, d->location);
cudaStreamSynchronize(*s);
return ret;
}
[[maybe_unused]] static bool
sdfg_gpu_debug_compare_memref(MemRef2 &a, MemRef2 &b, char const *msg) {
if (a.sizes[0] != b.sizes[0] || a.sizes[1] != b.sizes[1] ||
a.strides[0] != b.strides[0] || a.strides[1] != b.strides[1])
return false;
size_t data_size = memref_get_data_size(a);
for (size_t i = 0; i < data_size / sizeof(uint64_t); ++i)
if ((a.aligned + a.offset)[i] != (b.aligned + b.offset)[i]) {
std::cout << msg << " - memrefs differ at position " << i << " "
<< (a.aligned + a.offset)[i] << " " << (b.aligned + b.offset)[i]
<< "\n";
return false;
}
return true;
}
// Stream emulator processes
void memref_keyswitch_lwe_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr) {
assert(p->sk_index.val == 0 && "multiple ksk is not yet implemented on GPU");
auto sched = [&](Dependence *d) {
uint64_t num_samples = d->host_data.sizes[0];
MemRef2 out = {
0, 0, 0, {num_samples, p->output_size.val}, {p->output_size.val, 1}};
size_t data_size = memref_get_data_size(out);
if (loc == host_location) {
// If it is not profitable to offload, schedule kernel on CPU
out.allocated = out.aligned =
(uint64_t *)((out_ptr != nullptr) ? out_ptr : malloc(data_size));
memref_batched_keyswitch_lwe_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d->host_data.allocated,
d->host_data.aligned, d->host_data.offset, d->host_data.sizes[0],
d->host_data.sizes[1], d->host_data.strides[0],
d->host_data.strides[1], p->level.val, p->base_log.val,
p->input_lwe_dim.val, p->output_lwe_dim.val, p->sk_index.val,
p->ctx.val);
Dependence *dep =
new Dependence(loc, out, nullptr, true, true, d->chunk_id);
return dep;
} else {
// Schedule the keyswitch kernel on the GPU
cudaStream_t *s = (cudaStream_t *)p->dfg->get_gpu_stream(loc);
void *ct0_gpu = d->device_data;
void *out_gpu = cuda_malloc_async(data_size, s, loc);
void *ksk_gpu = p->ctx.val->get_ksk_gpu(
p->level.val, p->input_lwe_dim.val, p->output_lwe_dim.val, loc, s);
cuda_keyswitch_lwe_ciphertext_vector_64(
s, loc, out_gpu, ct0_gpu, ksk_gpu, p->input_lwe_dim.val,
p->output_lwe_dim.val, p->base_log.val, p->level.val, num_samples);
Dependence *dep =
new Dependence(loc, out, out_gpu, false, false, d->chunk_id);
return dep;
}
};
Dependence *idep = p->input_streams[0]->get(loc);
p->output_streams[0]->put(sched(idep));
}
void memref_bootstrap_lwe_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr) {
assert(p->sk_index.val == 0 && "multiple bsk is not yet implemented on GPU");
assert(p->output_size.val == p->glwe_dim.val * p->poly_size.val + 1);
Dependence *idep1 = p->input_streams[1]->get(host_location);
MemRef2 &mtlu = idep1->host_data;
uint32_t num_lut_vectors = mtlu.sizes[0];
uint64_t glwe_ct_len =
p->poly_size.val * (p->glwe_dim.val + 1) * num_lut_vectors;
uint64_t glwe_ct_size = glwe_ct_len * sizeof(uint64_t);
uint64_t *glwe_ct = (uint64_t *)malloc(glwe_ct_size);
auto tlu = mtlu.aligned + mtlu.offset;
// Glwe trivial encryption
size_t pos = 0, postlu = 0;
for (size_t l = 0; l < num_lut_vectors; ++l) {
for (size_t i = 0; i < p->poly_size.val * p->glwe_dim.val; i++) {
glwe_ct[pos++] = 0;
}
for (size_t i = 0; i < p->poly_size.val; i++) {
glwe_ct[pos++] = tlu[postlu++];
}
}
auto sched = [&](Dependence *d0, Dependence *d1, uint64_t *glwe_ct,
std::vector<size_t> &lut_indexes, cudaStream_t *s,
int32_t loc) {
uint64_t num_samples = d0->host_data.sizes[0];
MemRef2 out = {
0, 0, 0, {num_samples, p->output_size.val}, {p->output_size.val, 1}};
size_t data_size = memref_get_data_size(out);
// Move test vector indexes to the GPU, the test vector indexes is set of 0
uint32_t lwe_idx = 0,
test_vector_idxes_size = num_samples * sizeof(uint64_t);
uint64_t *test_vector_idxes = (uint64_t *)malloc(test_vector_idxes_size);
if (lut_indexes.size() == 1) {
memset((void *)test_vector_idxes, lut_indexes[0], test_vector_idxes_size);
} else {
assert(lut_indexes.size() == num_samples);
for (size_t i = 0; i < num_samples; ++i)
test_vector_idxes[i] = lut_indexes[i];
}
if (loc == host_location) {
// If it is not profitable to offload, schedule kernel on CPU
out.allocated = out.aligned =
(uint64_t *)((out_ptr != nullptr) ? out_ptr : malloc(data_size));
if (lut_indexes.size() == 1)
memref_batched_bootstrap_lwe_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d0->host_data.allocated,
d0->host_data.aligned, d0->host_data.offset, d0->host_data.sizes[0],
d0->host_data.sizes[1], d0->host_data.strides[0],
d0->host_data.strides[1], d1->host_data.allocated,
d1->host_data.aligned, d1->host_data.offset, d1->host_data.sizes[1],
d1->host_data.strides[1], p->input_lwe_dim.val, p->poly_size.val,
p->level.val, p->base_log.val, p->glwe_dim.val, p->sk_index.val,
p->ctx.val);
else
memref_batched_mapped_bootstrap_lwe_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d0->host_data.allocated,
d0->host_data.aligned, d0->host_data.offset, d0->host_data.sizes[0],
d0->host_data.sizes[1], d0->host_data.strides[0],
d0->host_data.strides[1], d1->host_data.allocated,
d1->host_data.aligned, d1->host_data.offset, d1->host_data.sizes[0],
d1->host_data.sizes[1], d1->host_data.strides[0],
d1->host_data.strides[1], p->input_lwe_dim.val, p->poly_size.val,
p->level.val, p->base_log.val, p->glwe_dim.val, p->sk_index.val,
p->ctx.val);
Dependence *dep =
new Dependence(loc, out, nullptr, true, true, d0->chunk_id);
free(glwe_ct);
return dep;
} else {
// Schedule the bootstrap kernel on the GPU
void *glwe_ct_gpu = cuda_malloc_async(glwe_ct_size, s, loc);
cuda_memcpy_async_to_gpu(glwe_ct_gpu, glwe_ct, glwe_ct_size, s, loc);
void *test_vector_idxes_gpu =
cuda_malloc_async(test_vector_idxes_size, s, loc);
cuda_memcpy_async_to_gpu(test_vector_idxes_gpu, (void *)test_vector_idxes,
test_vector_idxes_size, s, loc);
int8_t *pbs_buffer = p->dfg->gpus[loc].get_pbs_buffer(
p->glwe_dim.val, p->poly_size.val, num_samples);
void *ct0_gpu = d0->device_data;
void *out_gpu = cuda_malloc_async(data_size, s, loc);
void *fbsk_gpu =
p->ctx.val->get_bsk_gpu(p->input_lwe_dim.val, p->poly_size.val,
p->level.val, p->glwe_dim.val, loc, s);
cuda_bootstrap_amortized_lwe_ciphertext_vector_64(
s, loc, out_gpu, glwe_ct_gpu, test_vector_idxes_gpu, ct0_gpu,
fbsk_gpu, (int8_t *)pbs_buffer, p->input_lwe_dim.val, p->glwe_dim.val,
p->poly_size.val, p->base_log.val, p->level.val, num_samples,
lut_indexes.size(), lwe_idx, cuda_get_max_shared_memory(loc));
cuda_drop_async(test_vector_idxes_gpu, s, loc);
cuda_drop_async(glwe_ct_gpu, s, loc);
Dependence *dep =
new Dependence(loc, out, out_gpu, false, false, d0->chunk_id);
// As streams are not synchronized, we can only free this vector
// after a later synchronization point where we are guaranteed that
// this vector is no longer needed.
p->dfg->register_stream_order_dependent_allocation(test_vector_idxes);
p->dfg->register_stream_order_dependent_allocation(glwe_ct);
return dep;
}
};
// If this is a mapped TLU
// FIXME: for now we do not provide more advanced ways of selecting
bool mapped = (p->input_streams[1]->dep->host_data.sizes[0] > 1);
std::vector<size_t> lut_indexes;
if (mapped) {
lut_indexes.resize(num_lut_vectors);
std::iota(lut_indexes.begin(), lut_indexes.end(), 0);
} else {
lut_indexes.push_back(0);
}
cudaStream_t *cstream = (cudaStream_t *)p->dfg->get_gpu_stream(loc);
Dependence *idep0 = p->input_streams[0]->get(loc);
p->output_streams[0]->put(
sched(idep0, idep1, glwe_ct, lut_indexes, cstream, loc));
}
void memref_add_lwe_ciphertexts_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr) {
auto sched = [&](Dependence *d0, Dependence *d1, cudaStream_t *s,
int32_t loc) {
assert(d0->host_data.sizes[0] == d1->host_data.sizes[0]);
assert(d0->host_data.sizes[1] == d1->host_data.sizes[1]);
assert(d0->location == d1->location);
assert(d0->chunk_id == d1->chunk_id);
uint64_t num_samples = d0->host_data.sizes[0];
MemRef2 out = {0,
0,
0,
{num_samples, d0->host_data.sizes[1]},
{d0->host_data.sizes[1], 1}};
size_t data_size = memref_get_data_size(out);
if (loc == host_location) {
// If it is not profitable to offload, schedule kernel on CPU
out.allocated = out.aligned =
(uint64_t *)((out_ptr != nullptr) ? out_ptr : malloc(data_size));
memref_batched_add_lwe_ciphertexts_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d0->host_data.allocated,
d0->host_data.aligned, d0->host_data.offset, d0->host_data.sizes[0],
d0->host_data.sizes[1], d0->host_data.strides[0],
d0->host_data.strides[1], d1->host_data.allocated,
d1->host_data.aligned, d1->host_data.offset, d1->host_data.sizes[0],
d1->host_data.sizes[1], d1->host_data.strides[0],
d1->host_data.strides[1]);
Dependence *dep =
new Dependence(loc, out, nullptr, true, true, d0->chunk_id);
return dep;
} else {
// Schedule the kernel on the GPU
void *out_gpu = cuda_malloc_async(data_size, s, loc);
cuda_add_lwe_ciphertext_vector_64(
s, loc, out_gpu, d0->device_data, d1->device_data,
d0->host_data.sizes[1] - 1, num_samples);
Dependence *dep =
new Dependence(loc, out, out_gpu, false, false, d0->chunk_id);
return dep;
}
};
Dependence *idep0 = p->input_streams[0]->get(loc);
Dependence *idep1 = p->input_streams[1]->get(loc);
p->output_streams[0]->put(
sched(idep0, idep1, (cudaStream_t *)p->dfg->get_gpu_stream(loc), loc));
}
void memref_add_plaintext_lwe_ciphertext_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr) {
auto sched = [&](Dependence *d0, Dependence *d1, cudaStream_t *s,
int32_t loc) {
assert(d0->host_data.sizes[0] == d1->host_data.sizes[1] ||
d1->host_data.sizes[1] == 1);
assert(d0->location == d1->location);
assert(d0->chunk_id == d1->chunk_id);
uint64_t num_samples = d0->host_data.sizes[0];
MemRef2 out = {0,
0,
0,
{num_samples, d0->host_data.sizes[1]},
{d0->host_data.sizes[1], 1}};
size_t data_size = memref_get_data_size(out);
if (loc == host_location) {
// If it is not profitable to offload, schedule kernel on CPU
out.allocated = out.aligned =
(uint64_t *)((out_ptr != nullptr) ? out_ptr : malloc(data_size));
if (d1->host_data.sizes[1] == 1) // Constant case
memref_batched_add_plaintext_cst_lwe_ciphertext_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d0->host_data.allocated,
d0->host_data.aligned, d0->host_data.offset, d0->host_data.sizes[0],
d0->host_data.sizes[1], d0->host_data.strides[0],
d0->host_data.strides[1], *d1->host_data.aligned);
else
memref_batched_add_plaintext_lwe_ciphertext_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d0->host_data.allocated,
d0->host_data.aligned, d0->host_data.offset, d0->host_data.sizes[0],
d0->host_data.sizes[1], d0->host_data.strides[0],
d0->host_data.strides[1], d1->host_data.allocated,
d1->host_data.aligned, d1->host_data.offset, d1->host_data.sizes[1],
d1->host_data.strides[1]);
Dependence *dep =
new Dependence(loc, out, nullptr, true, true, d0->chunk_id);
return dep;
} else {
// Schedule the kernel on the GPU
void *out_gpu = cuda_malloc_async(data_size, s, loc);
cuda_add_lwe_ciphertext_vector_plaintext_vector_64(
s, loc, out_gpu, d0->device_data, d1->device_data,
d0->host_data.sizes[1] - 1, num_samples);
Dependence *dep =
new Dependence(loc, out, out_gpu, false, false, d0->chunk_id);
return dep;
}
};
Dependence *idep0 = p->input_streams[0]->get(loc);
Dependence *idep1 = p->input_streams[1]->get(loc);
p->output_streams[0]->put(
sched(idep0, idep1, (cudaStream_t *)p->dfg->get_gpu_stream(loc), loc));
}
void memref_mul_cleartext_lwe_ciphertext_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr) {
auto sched = [&](Dependence *d0, Dependence *d1, cudaStream_t *s,
int32_t loc) {
assert(d0->host_data.sizes[0] == d1->host_data.sizes[1] ||
d1->host_data.sizes[1] == 1);
assert(d0->location == d1->location);
assert(d0->chunk_id == d1->chunk_id);
uint64_t num_samples = d0->host_data.sizes[0];
MemRef2 out = {0,
0,
0,
{num_samples, d0->host_data.sizes[1]},
{d0->host_data.sizes[1], 1}};
size_t data_size = memref_get_data_size(out);
if (loc == host_location) {
// If it is not profitable to offload, schedule kernel on CPU
out.allocated = out.aligned =
(uint64_t *)((out_ptr != nullptr) ? out_ptr : malloc(data_size));
if (d1->host_data.sizes[1] == 1) // Constant case
memref_batched_mul_cleartext_cst_lwe_ciphertext_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d0->host_data.allocated,
d0->host_data.aligned, d0->host_data.offset, d0->host_data.sizes[0],
d0->host_data.sizes[1], d0->host_data.strides[0],
d0->host_data.strides[1], *d1->host_data.aligned);
else
memref_batched_mul_cleartext_lwe_ciphertext_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d0->host_data.allocated,
d0->host_data.aligned, d0->host_data.offset, d0->host_data.sizes[0],
d0->host_data.sizes[1], d0->host_data.strides[0],
d0->host_data.strides[1], d1->host_data.allocated,
d1->host_data.aligned, d1->host_data.offset, d1->host_data.sizes[1],
d1->host_data.strides[1]);
Dependence *dep =
new Dependence(loc, out, nullptr, true, true, d0->chunk_id);
return dep;
} else {
// Schedule the keyswitch kernel on the GPU
void *out_gpu = cuda_malloc_async(data_size, s, loc);
cuda_mult_lwe_ciphertext_vector_cleartext_vector_64(
s, loc, out_gpu, d0->device_data, d1->device_data,
d0->host_data.sizes[1] - 1, num_samples);
Dependence *dep =
new Dependence(loc, out, out_gpu, false, false, d0->chunk_id);
return dep;
}
};
Dependence *idep0 = p->input_streams[0]->get(loc);
Dependence *idep1 = p->input_streams[1]->get(loc);
p->output_streams[0]->put(
sched(idep0, idep1, (cudaStream_t *)p->dfg->get_gpu_stream(loc), loc));
}
void memref_negate_lwe_ciphertext_u64_process(Process *p, int32_t loc,
uint64_t *out_ptr) {
auto sched = [&](Dependence *d0, cudaStream_t *s, int32_t loc) {
uint64_t num_samples = d0->host_data.sizes[0];
MemRef2 out = {0,
0,
0,
{num_samples, d0->host_data.sizes[1]},
{d0->host_data.sizes[1], 1}};
size_t data_size = memref_get_data_size(out);
if (loc == host_location) {
// If it is not profitable to offload, schedule kernel on CPU
out.allocated = out.aligned =
(uint64_t *)((out_ptr != nullptr) ? out_ptr : malloc(data_size));
memref_batched_negate_lwe_ciphertext_u64(
out.allocated, out.aligned, out.offset, out.sizes[0], out.sizes[1],
out.strides[0], out.strides[1], d0->host_data.allocated,
d0->host_data.aligned, d0->host_data.offset, d0->host_data.sizes[0],
d0->host_data.sizes[1], d0->host_data.strides[0],
d0->host_data.strides[1]);
Dependence *dep =
new Dependence(loc, out, nullptr, true, true, d0->chunk_id);
return dep;
} else {
// Schedule the kernel on the GPU
void *out_gpu = cuda_malloc_async(data_size, s, loc);
cuda_negate_lwe_ciphertext_vector_64(s, loc, out_gpu, d0->device_data,
d0->host_data.sizes[1] - 1,
num_samples);
Dependence *dep =
new Dependence(loc, out, out_gpu, false, false, d0->chunk_id);
return dep;
}
};
Dependence *idep0 = p->input_streams[0]->get(loc);
p->output_streams[0]->put(
sched(idep0, (cudaStream_t *)p->dfg->get_gpu_stream(loc), loc));
}
} // namespace
} // namespace gpu_dfg
} // namespace concretelang
} // namespace mlir
using namespace mlir::concretelang::gpu_dfg;
// Code generation interface
void stream_emulator_make_memref_add_lwe_ciphertexts_u64_process(void *dfg,
void *sin1,
void *sin2,
void *sout) {
Process *p = make_process_2_1(dfg, sin1, sin2, sout,
memref_add_lwe_ciphertexts_u64_process);
static int count = 0;
sprintf(p->name, "add_lwe_ciphertexts_%d", count++);
}
void stream_emulator_make_memref_add_plaintext_lwe_ciphertext_u64_process(
void *dfg, void *sin1, void *sin2, void *sout) {
Process *p = make_process_2_1(
dfg, sin1, sin2, sout, memref_add_plaintext_lwe_ciphertext_u64_process);
static int count = 0;
sprintf(p->name, "add_plaintext_lwe_ciphertexts_%d", count++);
}
void stream_emulator_make_memref_mul_cleartext_lwe_ciphertext_u64_process(
void *dfg, void *sin1, void *sin2, void *sout) {
Process *p = make_process_2_1(
dfg, sin1, sin2, sout, memref_mul_cleartext_lwe_ciphertext_u64_process);
static int count = 0;
sprintf(p->name, "mul_cleartext_lwe_ciphertexts_%d", count++);
}
void stream_emulator_make_memref_negate_lwe_ciphertext_u64_process(void *dfg,
void *sin1,
void *sout) {
Process *p = make_process_1_1(dfg, sin1, sout,
memref_negate_lwe_ciphertext_u64_process);
static int count = 0;
sprintf(p->name, "negate_lwe_ciphertext_%d", count++);
}
void stream_emulator_make_memref_keyswitch_lwe_u64_process(
void *dfg, void *sin1, void *sout, uint32_t level, uint32_t base_log,
uint32_t input_lwe_dim, uint32_t output_lwe_dim, uint32_t output_size,
uint32_t ksk_index, void *context) {
Process *p =
make_process_1_1(dfg, sin1, sout, memref_keyswitch_lwe_u64_process);
p->level.val = level;
p->base_log.val = base_log;
p->input_lwe_dim.val = input_lwe_dim;
p->output_lwe_dim.val = output_lwe_dim;
p->sk_index.val = ksk_index;
p->output_size.val = output_size;
p->ctx.val = (RuntimeContext *)context;
static int count = 0;
sprintf(p->name, "keyswitch_%d", count++);
}
void stream_emulator_make_memref_bootstrap_lwe_u64_process(
void *dfg, void *sin1, void *sin2, void *sout, uint32_t input_lwe_dim,
uint32_t poly_size, uint32_t level, uint32_t base_log, uint32_t glwe_dim,
uint32_t output_size, uint32_t bsk_index, void *context) {
// The TLU does not need to be sent to GPU
((Stream *)sin2)->type = TS_STREAM_TYPE_X86_TO_X86_LSAP;
Process *p =
make_process_2_1(dfg, sin1, sin2, sout, memref_bootstrap_lwe_u64_process);
p->input_lwe_dim.val = input_lwe_dim;
p->poly_size.val = poly_size;
p->level.val = level;
p->base_log.val = base_log;
p->glwe_dim.val = glwe_dim;
p->sk_index.val = bsk_index;
p->output_size.val = output_size;
p->ctx.val = (RuntimeContext *)context;
static int count = 0;
sprintf(p->name, "bootstrap_%d", count++);
}
void stream_emulator_make_memref_batched_add_lwe_ciphertexts_u64_process(
void *dfg, void *sin1, void *sin2, void *sout) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
((Stream *)sin2)->batched_stream = true;
((Stream *)sin2)->ct_stream = true;
stream_emulator_make_memref_add_lwe_ciphertexts_u64_process(dfg, sin1, sin2,
sout);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void stream_emulator_make_memref_batched_add_plaintext_lwe_ciphertext_u64_process(
void *dfg, void *sin1, void *sin2, void *sout) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
((Stream *)sin2)->batched_stream = true;
((Stream *)sin2)->pt_stream = true;
stream_emulator_make_memref_add_plaintext_lwe_ciphertext_u64_process(
dfg, sin1, sin2, sout);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void stream_emulator_make_memref_batched_add_plaintext_cst_lwe_ciphertext_u64_process(
void *dfg, void *sin1, void *sin2, void *sout) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
((Stream *)sin2)->const_stream = true;
((Stream *)sin2)->pt_stream = true;
stream_emulator_make_memref_add_plaintext_lwe_ciphertext_u64_process(
dfg, sin1, sin2, sout);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void stream_emulator_make_memref_batched_mul_cleartext_lwe_ciphertext_u64_process(
void *dfg, void *sin1, void *sin2, void *sout) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
((Stream *)sin2)->batched_stream = true;
((Stream *)sin2)->pt_stream = true;
stream_emulator_make_memref_mul_cleartext_lwe_ciphertext_u64_process(
dfg, sin1, sin2, sout);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void stream_emulator_make_memref_batched_mul_cleartext_cst_lwe_ciphertext_u64_process(
void *dfg, void *sin1, void *sin2, void *sout) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
((Stream *)sin2)->const_stream = true;
((Stream *)sin2)->pt_stream = true;
stream_emulator_make_memref_mul_cleartext_lwe_ciphertext_u64_process(
dfg, sin1, sin2, sout);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void stream_emulator_make_memref_batched_negate_lwe_ciphertext_u64_process(
void *dfg, void *sin1, void *sout) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
stream_emulator_make_memref_negate_lwe_ciphertext_u64_process(dfg, sin1,
sout);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void stream_emulator_make_memref_batched_keyswitch_lwe_u64_process(
void *dfg, void *sin1, void *sout, uint32_t level, uint32_t base_log,
uint32_t input_lwe_dim, uint32_t output_lwe_dim, uint32_t output_size,
uint32_t ksk_index, void *context) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
stream_emulator_make_memref_keyswitch_lwe_u64_process(
dfg, sin1, sout, level, base_log, input_lwe_dim, output_lwe_dim,
output_size, ksk_index, context);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void stream_emulator_make_memref_batched_bootstrap_lwe_u64_process(
void *dfg, void *sin1, void *sin2, void *sout, uint32_t input_lwe_dim,
uint32_t poly_size, uint32_t level, uint32_t base_log, uint32_t glwe_dim,
uint32_t output_size, uint32_t bsk_index, void *context) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
((Stream *)sin2)->const_stream = true;
stream_emulator_make_memref_bootstrap_lwe_u64_process(
dfg, sin1, sin2, sout, input_lwe_dim, poly_size, level, base_log,
glwe_dim, output_size, bsk_index, context);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void stream_emulator_make_memref_batched_mapped_bootstrap_lwe_u64_process(
void *dfg, void *sin1, void *sin2, void *sout, uint32_t input_lwe_dim,
uint32_t poly_size, uint32_t level, uint32_t base_log, uint32_t glwe_dim,
uint32_t output_size, uint32_t bsk_index, void *context) {
((Stream *)sin1)->batched_stream = true;
((Stream *)sin1)->ct_stream = true;
((Stream *)sin2)->batched_stream = true;
((Stream *)sin2)->ct_stream = true;
stream_emulator_make_memref_bootstrap_lwe_u64_process(
dfg, sin1, sin2, sout, input_lwe_dim, poly_size, level, base_log,
glwe_dim, output_size, bsk_index, context);
((Stream *)sout)->batched_stream = true;
((Stream *)sout)->ct_stream = true;
}
void *stream_emulator_make_uint64_stream(const char *name, stream_type stype) {
return (void *)new Stream(stype);
}
void stream_emulator_put_uint64(void *stream, uint64_t e) {
Stream *s = (Stream *)stream;
uint64_t *data = (uint64_t *)malloc(sizeof(uint64_t));
*data = e;
MemRef2 m = {data, data, 0, {1, 1}, {1, 1}};
Dependence *dep = new Dependence(host_location, m, nullptr, true, true);
s->put(dep);
}
uint64_t stream_emulator_get_uint64(void *stream) {
uint64_t res;
auto s = (Stream *)stream;
MemRef2 m = {&res, &res, 0, {1, 1}, {1, 1}};
s->get_on_host(m);
s->eager_dependence_deallocation();
return res;
}
void *stream_emulator_make_memref_stream(const char *name, stream_type stype) {
return (void *)new Stream(stype);
}
void stream_emulator_put_memref(void *stream, uint64_t *allocated,
uint64_t *aligned, uint64_t offset,
uint64_t size, uint64_t stride) {
assert(stride == 1 && "Strided memrefs not supported");
Stream *s = (Stream *)stream;
MemRef2 m = {allocated, aligned, offset, {1, size}, {size, stride}};
Dependence *dep =
new Dependence(host_location, memref_copy_alloc(m), nullptr, true, true);
s->put(dep);
}
void stream_emulator_get_memref(void *stream, uint64_t *out_allocated,
uint64_t *out_aligned, uint64_t out_offset,
uint64_t out_size, uint64_t out_stride) {
assert(out_stride == 1 && "Strided memrefs not supported");
MemRef2 mref = {out_allocated,
out_aligned,
out_offset,
{1, out_size},
{out_size, out_stride}};
auto s = (Stream *)stream;
s->get_on_host(mref);
s->eager_dependence_deallocation();
}
void *stream_emulator_make_memref_batch_stream(const char *name,
stream_type stype) {
return (void *)new Stream(stype);
}
void stream_emulator_put_memref_batch(void *stream, uint64_t *allocated,
uint64_t *aligned, uint64_t offset,
uint64_t size0, uint64_t size1,
uint64_t stride0, uint64_t stride1) {
assert(stride1 == 1 && "Strided memrefs not supported");
Stream *s = (Stream *)stream;
MemRef2 m = {allocated, aligned, offset, {size0, size1}, {stride0, stride1}};
Dependence *dep =
new Dependence(host_location, memref_copy_alloc(m), nullptr, true, true);
s->put(dep);
}
void stream_emulator_get_memref_batch(void *stream, uint64_t *out_allocated,
uint64_t *out_aligned,
uint64_t out_offset, uint64_t out_size0,
uint64_t out_size1, uint64_t out_stride0,
uint64_t out_stride1) {
assert(out_stride1 == 1 && "Strided memrefs not supported");
MemRef2 mref = {out_allocated,
out_aligned,
out_offset,
{out_size0, out_size1},
{out_stride0, out_stride1}};
auto s = (Stream *)stream;
s->get_on_host(mref);
s->eager_dependence_deallocation();
}
void *stream_emulator_init() {
int num;
if (num_devices == 0) {
assert(cudaGetDeviceCount(&num) == cudaSuccess);
num_devices = num;
}
char *env = getenv("SDFG_NUM_GPUS");
if (env != nullptr) {
size_t requested_gpus = strtoul(env, NULL, 10);
if (requested_gpus > num_devices)
warnx("WARNING: requested more GPUs (%lu) than available (%lu) - "
"continuing with available devices.",
requested_gpus, num_devices);
else
num_devices = requested_gpus;
}
env = getenv("SDFG_DISTRIBUTE_BATCH_OPS");
if (env != nullptr && (!strncmp(env, "off", 3) || !strncmp(env, "OFF", 3) ||
!strncmp(env, "0", 1))) {
dont_distribute_batched_ops = true;
}
assert(num_devices > 0 && "No GPUs available on system.");
hwloc_topology_t topology;
hwloc_topology_init(&topology);
hwloc_topology_set_all_types_filter(topology, HWLOC_TYPE_FILTER_KEEP_NONE);
hwloc_topology_set_type_filter(topology, HWLOC_OBJ_CORE,
HWLOC_TYPE_FILTER_KEEP_ALL);
hwloc_topology_load(topology);
num_cores = hwloc_get_nbobjs_by_type(topology, HWLOC_OBJ_CORE);
env = getenv("OMP_NUM_THREADS");
if (env != nullptr)
num_cores = strtoul(env, NULL, 10);
if (num_cores < 1)
num_cores = 1;
int device = next_device.fetch_add(1) % num_devices;
return new GPU_DFG(device);
}
void stream_emulator_run(void *dfg) {}
void stream_emulator_delete(void *dfg) { delete (GPU_DFG *)dfg; }
#endif