Files
concrete/compiler/lib/ServerLib/DynamicRankCall.cpp
Quentin Bourgerie 8cd3a3a599 feat(compiler): First draft to support FHE.eint up to 16bits
For now what it works are only levelled ops with user parameters. (take a look to the tests)

Done:
- Add parameters to the fhe parameters to support CRT-based large integers
- Add command line options and tests options to allows the user to give those new parameters
- Update the dialects and pipeline to handle new fhe parameters for CRT-based large integers
- Update the client parameters and the client library to handle the CRT-based large integers

Todo:
- Plug the optimizer to compute the CRT-based large interger parameters
- Plug the pbs for the CRT-based large integer
2022-08-12 16:35:11 +02:00

209 lines
7.8 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
// generated: see genDynamicRandCall.py
#include <cassert>
#include <vector>
#include "concretelang/ClientLib/Types.h"
#include "concretelang/ServerLib/DynamicArityCall.h"
#include "concretelang/ServerLib/ServerLambda.h"
namespace concretelang {
namespace serverlib {
/// Helper class template that yields an unsigned integer type given a
/// size in bytes
template <std::size_t size> struct int_type_of_size {};
template <> struct int_type_of_size<4> { typedef uint32_t type; };
template <> struct int_type_of_size<8> { typedef uint64_t type; };
/// Converts one function pointer into another
// TODO: Not sure this is valid in all implementations / on all
// architectures
template <typename FnDstT, typename FnSrcT> FnDstT convert_fnptr(FnSrcT src) {
static_assert(sizeof(FnDstT) == sizeof(FnSrcT),
"Size of function types must match");
using inttype = typename int_type_of_size<sizeof(FnDstT)>::type;
inttype raw = reinterpret_cast<inttype>(src);
return reinterpret_cast<FnDstT>(raw);
}
TensorData multi_arity_call_dynamic_rank(void *(*func)(void *...),
std::vector<void *> args,
size_t rank) {
using concretelang::clientlib::MemRefDescriptor;
constexpr auto convert = concretelang::clientlib::tensorDataFromMemRef;
switch (rank) {
case 1: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<1> (*)(void *...)>(func), args);
return convert(1, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 2: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<2> (*)(void *...)>(func), args);
return convert(2, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 3: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<3> (*)(void *...)>(func), args);
return convert(3, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 4: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<4> (*)(void *...)>(func), args);
return convert(4, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 5: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<5> (*)(void *...)>(func), args);
return convert(5, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 6: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<6> (*)(void *...)>(func), args);
return convert(6, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 7: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<7> (*)(void *...)>(func), args);
return convert(7, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 8: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<8> (*)(void *...)>(func), args);
return convert(8, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 9: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<9> (*)(void *...)>(func), args);
return convert(9, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 10: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<10> (*)(void *...)>(func), args);
return convert(10, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 11: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<11> (*)(void *...)>(func), args);
return convert(11, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 12: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<12> (*)(void *...)>(func), args);
return convert(12, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 13: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<13> (*)(void *...)>(func), args);
return convert(13, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 14: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<14> (*)(void *...)>(func), args);
return convert(14, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 15: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<15> (*)(void *...)>(func), args);
return convert(15, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 16: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<16> (*)(void *...)>(func), args);
return convert(16, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 17: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<17> (*)(void *...)>(func), args);
return convert(17, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 18: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<18> (*)(void *...)>(func), args);
return convert(18, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 19: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<19> (*)(void *...)>(func), args);
return convert(19, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 20: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<20> (*)(void *...)>(func), args);
return convert(20, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 21: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<21> (*)(void *...)>(func), args);
return convert(21, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 22: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<22> (*)(void *...)>(func), args);
return convert(22, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 23: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<23> (*)(void *...)>(func), args);
return convert(23, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 24: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<24> (*)(void *...)>(func), args);
return convert(24, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 25: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<25> (*)(void *...)>(func), args);
return convert(25, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 26: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<26> (*)(void *...)>(func), args);
return convert(26, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 27: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<27> (*)(void *...)>(func), args);
return convert(27, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 28: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<28> (*)(void *...)>(func), args);
return convert(28, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 29: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<29> (*)(void *...)>(func), args);
return convert(29, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 30: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<30> (*)(void *...)>(func), args);
return convert(30, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 31: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<31> (*)(void *...)>(func), args);
return convert(31, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
case 32: {
auto m = multi_arity_call(
convert_fnptr<MemRefDescriptor<32> (*)(void *...)>(func), args);
return convert(32, m.allocated, m.aligned, m.offset, m.sizes, m.strides);
}
default:
assert(false);
}
}
} // namespace serverlib
} // namespace concretelang