mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 12:15:09 -05:00
Quick fix due to ordering of includes, had to add #include <mlir/Transforms/DialectConversion.h> to include/concretelang/Conversion/Utils/GenericOpTypeConversionPattern.h
122 lines
4.4 KiB
C++
122 lines
4.4 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/homomorphizer/blob/master/LICENSE.txt for license
|
|
// information.
|
|
|
|
#include <iostream>
|
|
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
#include "concretelang/Conversion/FHEToTFHE/Patterns.h"
|
|
#include "concretelang/Conversion/Passes.h"
|
|
#include "concretelang/Conversion/Utils/RegionOpTypeConverterPattern.h"
|
|
#include "concretelang/Conversion/Utils/TensorOpTypeConversion.h"
|
|
#include "concretelang/Dialect/FHE/IR/FHEDialect.h"
|
|
#include "concretelang/Dialect/FHE/IR/FHETypes.h"
|
|
#include "concretelang/Dialect/RT/IR/RTOps.h"
|
|
#include "concretelang/Dialect/TFHE/IR/TFHEDialect.h"
|
|
#include "concretelang/Dialect/TFHE/IR/TFHETypes.h"
|
|
|
|
namespace {
|
|
struct FHEToTFHEPass : public FHEToTFHEBase<FHEToTFHEPass> {
|
|
void runOnOperation() final;
|
|
};
|
|
} // namespace
|
|
|
|
using mlir::concretelang::FHE::EncryptedIntegerType;
|
|
using mlir::concretelang::TFHE::GLWECipherTextType;
|
|
|
|
/// FHEToTFHETypeConverter is a TypeConverter that transform
|
|
/// `FHE.eint<p>` to `TFHE.glwe<{_,_,_}{p}>`
|
|
class FHEToTFHETypeConverter : public mlir::TypeConverter {
|
|
|
|
public:
|
|
FHEToTFHETypeConverter() {
|
|
addConversion([](mlir::Type type) { return type; });
|
|
addConversion([](EncryptedIntegerType type) {
|
|
return mlir::concretelang::convertTypeEncryptedIntegerToGLWE(
|
|
type.getContext(), type);
|
|
});
|
|
addConversion([](mlir::RankedTensorType type) {
|
|
auto eint =
|
|
type.getElementType().dyn_cast_or_null<EncryptedIntegerType>();
|
|
if (eint == nullptr) {
|
|
return (mlir::Type)(type);
|
|
}
|
|
mlir::Type r = mlir::RankedTensorType::get(
|
|
type.getShape(),
|
|
mlir::concretelang::convertTypeEncryptedIntegerToGLWE(
|
|
eint.getContext(), eint));
|
|
return r;
|
|
});
|
|
}
|
|
};
|
|
|
|
void FHEToTFHEPass::runOnOperation() {
|
|
auto op = this->getOperation();
|
|
|
|
mlir::ConversionTarget target(getContext());
|
|
FHEToTFHETypeConverter converter;
|
|
|
|
// Mark ops from the target dialect as legal operations
|
|
target.addLegalDialect<mlir::concretelang::TFHE::TFHEDialect>();
|
|
|
|
// Make sure that no ops from `FHE` remain after the lowering
|
|
target.addIllegalDialect<mlir::concretelang::FHE::FHEDialect>();
|
|
|
|
// Make sure that no ops `linalg.generic` that have illegal types
|
|
target
|
|
.addDynamicallyLegalOp<mlir::linalg::GenericOp, mlir::tensor::GenerateOp>(
|
|
[&](mlir::Operation *op) {
|
|
return (
|
|
converter.isLegal(op->getOperandTypes()) &&
|
|
converter.isLegal(op->getResultTypes()) &&
|
|
converter.isLegal(op->getRegion(0).front().getArgumentTypes()));
|
|
});
|
|
|
|
// Make sure that func has legal signature
|
|
target.addDynamicallyLegalOp<mlir::FuncOp>([&](mlir::FuncOp funcOp) {
|
|
return converter.isSignatureLegal(funcOp.getType()) &&
|
|
converter.isLegal(&funcOp.getBody());
|
|
});
|
|
// Add all patterns required to lower all ops from `FHE` to
|
|
// `TFHE`
|
|
mlir::OwningRewritePatternList patterns(&getContext());
|
|
|
|
populateWithGeneratedFHEToTFHE(patterns);
|
|
patterns.add<RegionOpTypeConverterPattern<mlir::linalg::GenericOp,
|
|
FHEToTFHETypeConverter>>(
|
|
&getContext(), converter);
|
|
patterns.add<RegionOpTypeConverterPattern<mlir::tensor::GenerateOp,
|
|
FHEToTFHETypeConverter>>(
|
|
&getContext(), converter);
|
|
patterns.add<
|
|
RegionOpTypeConverterPattern<mlir::scf::ForOp, FHEToTFHETypeConverter>>(
|
|
&getContext(), converter);
|
|
|
|
mlir::concretelang::populateWithTensorTypeConverterPatterns(patterns, target,
|
|
converter);
|
|
mlir::populateFuncOpTypeConversionPattern(patterns, converter);
|
|
|
|
// Conversion of RT Dialect Ops
|
|
patterns.add<mlir::concretelang::GenericTypeConverterPattern<
|
|
mlir::concretelang::RT::DataflowTaskOp>>(patterns.getContext(),
|
|
converter);
|
|
mlir::concretelang::addDynamicallyLegalTypeOp<
|
|
mlir::concretelang::RT::DataflowTaskOp>(target, converter);
|
|
|
|
// Apply conversion
|
|
if (mlir::applyPartialConversion(op, target, std::move(patterns)).failed()) {
|
|
this->signalPassFailure();
|
|
}
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace concretelang {
|
|
std::unique_ptr<OperationPass<ModuleOp>> createConvertFHEToTFHEPass() {
|
|
return std::make_unique<FHEToTFHEPass>();
|
|
}
|
|
} // namespace concretelang
|
|
} // namespace mlir
|