mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 03:55:04 -05:00
This commit rebases the compiler onto commit f69328049e9e from llvm-project. Changes: * Use of the one-shot bufferizer for improved memory management * A new pass `OneShotBufferizeDPSWrapper` that converts functions returning tensors to destination-passing-style as required by the one-shot bufferizer * A new pass `LinalgGenericOpWithTensorsToLoopsPass` that converts `linalg.generic` operations with value semantics to loop nests * Rebase onto a fork of llvm-project at f69328049e9e with local modifications to enable bufferization of `linalg.generic` operations with value semantics * Workaround for the absence of type propagation after type conversion via extra patterns in all dialect conversion passes * Printer, parser and verifier definitions moved from inline declarations in ODS to the respective source files as required by upstream changes * New tests for functions with a large number of inputs * Increase the number of allowed task inputs as required by new tests * Use upstream function `mlir_configure_python_dev_packages()` to locate Python development files for compatibility with various CMake versions Co-authored-by: Quentin Bourgerie <quentin.bourgerie@zama.ai> Co-authored-by: Ayoub Benaissa <ayoub.benaissa@zama.ai> Co-authored-by: Antoniu Pop <antoniu.pop@zama.ai>
76 lines
2.7 KiB
C++
76 lines
2.7 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include "concretelang/Transforms/Bufferize.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/Passes.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
// In a finalizing bufferize conversion, we know that all tensors have been
|
|
// converted to memrefs, thus, this op becomes an identity.
|
|
class BufferizeTensorStoreOp
|
|
: public OpConversionPattern<memref::TensorStoreOp> {
|
|
public:
|
|
using OpConversionPattern::OpConversionPattern;
|
|
LogicalResult
|
|
matchAndRewrite(memref::TensorStoreOp op, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
rewriter.replaceOpWithNewOp<memref::CopyOp>(op, op.tensor(), op.memref());
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void populatePatterns(bufferization::BufferizeTypeConverter &typeConverter,
|
|
RewritePatternSet &patterns) {
|
|
bufferization::populateEliminateBufferizeMaterializationsPatterns(
|
|
typeConverter, patterns);
|
|
patterns.add<BufferizeTensorStoreOp>(typeConverter, patterns.getContext());
|
|
}
|
|
|
|
namespace {
|
|
struct FinalizingBufferizePass
|
|
: public FinalizingBufferizeBase<FinalizingBufferizePass> {
|
|
using FinalizingBufferizeBase<
|
|
FinalizingBufferizePass>::FinalizingBufferizeBase;
|
|
|
|
void runOnOperation() override {
|
|
auto func = getOperation();
|
|
auto *context = &getContext();
|
|
|
|
bufferization::BufferizeTypeConverter typeConverter;
|
|
RewritePatternSet patterns(context);
|
|
ConversionTarget target(*context);
|
|
populatePatterns(typeConverter, patterns);
|
|
|
|
// If all result types are legal, and all block arguments are legal (ensured
|
|
// by func conversion above), then all types in the program are legal.
|
|
//
|
|
// We also check that the operand types are legal to avoid creating invalid
|
|
// IR. For example, this prevents
|
|
// populateEliminateBufferizeMaterializationsPatterns from updating the
|
|
// types of the operands to a return op without updating the enclosing
|
|
// function.
|
|
target.markUnknownOpDynamicallyLegal(
|
|
[&](Operation *op) { return typeConverter.isLegal(op); });
|
|
target.addLegalOp<memref::CopyOp>();
|
|
|
|
if (failed(applyFullConversion(func, target, std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
std::unique_ptr<OperationPass<func::FuncOp>>
|
|
mlir::concretelang::createFinalizingBufferizePass() {
|
|
return std::make_unique<FinalizingBufferizePass>();
|
|
}
|