Files
concrete/compiler/lib/Conversion/ConcreteToBConcrete/ConcreteToBConcrete.cpp
Mayeul@Zama ca8d4fb110 feat(compiler): use engine concrete C API
remove ConcreteToConcreteCAPI and ConcreteUnparametrize passes
2022-03-15 18:14:35 +01:00

999 lines
40 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/master/LICENSE.txt
// for license information.
#include <iostream>
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "concretelang/Conversion/Passes.h"
#include "concretelang/Conversion/Utils/RegionOpTypeConverterPattern.h"
#include "concretelang/Conversion/Utils/TensorOpTypeConversion.h"
#include "concretelang/Dialect/BConcrete/IR/BConcreteDialect.h"
#include "concretelang/Dialect/BConcrete/IR/BConcreteOps.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteDialect.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteOps.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteTypes.h"
#include "concretelang/Dialect/RT/IR/RTOps.h"
namespace {
struct ConcreteToBConcretePass
: public ConcreteToBConcreteBase<ConcreteToBConcretePass> {
void runOnOperation() final;
};
} // namespace
/// ConcreteToBConcreteTypeConverter is a TypeConverter that transform
/// `Concrete.lwe_ciphertext<dimension,p>` to `tensor<dimension+1, i64>>`
/// `tensor<...xConcrete.lwe_ciphertext<dimension,p>>` to
/// `tensor<...xdimension+1, i64>>`
class ConcreteToBConcreteTypeConverter : public mlir::TypeConverter {
public:
ConcreteToBConcreteTypeConverter() {
addConversion([](mlir::Type type) { return type; });
addConversion([&](mlir::concretelang::Concrete::LweCiphertextType type) {
assert(type.getDimension() != -1);
return mlir::RankedTensorType::get(
{type.getDimension() + 1},
mlir::IntegerType::get(type.getContext(), 64));
});
addConversion([&](mlir::concretelang::Concrete::GlweCiphertextType type) {
assert(type.getGlweDimension() != -1);
assert(type.getPolynomialSize() != -1);
return mlir::RankedTensorType::get(
{type.getPolynomialSize() * (type.getGlweDimension() + 1)},
mlir::IntegerType::get(type.getContext(), 64));
});
addConversion([&](mlir::RankedTensorType type) {
auto lwe = type.getElementType()
.dyn_cast_or_null<
mlir::concretelang::Concrete::LweCiphertextType>();
if (lwe == nullptr) {
return (mlir::Type)(type);
}
assert(lwe.getDimension() != -1);
mlir::SmallVector<int64_t> newShape;
newShape.reserve(type.getShape().size() + 1);
newShape.append(type.getShape().begin(), type.getShape().end());
newShape.push_back(lwe.getDimension() + 1);
mlir::Type r = mlir::RankedTensorType::get(
newShape, mlir::IntegerType::get(type.getContext(), 64));
return r;
});
addConversion([&](mlir::MemRefType type) {
auto lwe = type.getElementType()
.dyn_cast_or_null<
mlir::concretelang::Concrete::LweCiphertextType>();
if (lwe == nullptr) {
return (mlir::Type)(type);
}
assert(lwe.getDimension() != -1);
mlir::SmallVector<int64_t> newShape;
newShape.reserve(type.getShape().size() + 1);
newShape.append(type.getShape().begin(), type.getShape().end());
newShape.push_back(lwe.getDimension() + 1);
mlir::Type r = mlir::MemRefType::get(
newShape, mlir::IntegerType::get(type.getContext(), 64));
return r;
});
}
};
// This rewrite pattern transforms any instance of `Concrete.zero_tensor`
// operators.
//
// Example:
//
// ```mlir
// %0 = "Concrete.zero_tensor" () :
// tensor<...x!Concrete.lwe_ciphertext<lweDim,p>>
// ```
//
// becomes:
//
// ```mlir
// %0 = tensor.generate {
// ^bb0(... : index):
// %c0 = arith.constant 0 : i64
// tensor.yield %z
// }: tensor<...xlweDim+1xi64>
// i64>
// ```
template <typename ZeroOp>
struct ZeroOpPattern : public mlir::OpRewritePattern<ZeroOp> {
ZeroOpPattern(::mlir::MLIRContext *context, mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<ZeroOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(ZeroOp zeroOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = zeroOp.getType();
auto newResultTy = converter.convertType(resultTy);
auto generateBody = [&](mlir::OpBuilder &nestedBuilder,
mlir::Location nestedLoc,
mlir::ValueRange blockArgs) {
// %c0 = 0 : i64
auto cstOp = nestedBuilder.create<mlir::arith::ConstantOp>(
nestedLoc, nestedBuilder.getI64IntegerAttr(1));
// tensor.yield %z : !FHE.eint<p>
nestedBuilder.create<mlir::tensor::YieldOp>(nestedLoc, cstOp.getResult());
};
// tensor.generate
rewriter.replaceOpWithNewOp<mlir::tensor::GenerateOp>(
zeroOp, newResultTy, mlir::ValueRange{}, generateBody);
return ::mlir::success();
};
};
// This template rewrite pattern transforms any instance of
// `ConcreteOp` to an instance of `BConcreteOp`.
//
// Example:
//
// %0 = "ConcreteOp"(%arg0, ...) :
// (!Concrete.lwe_ciphertext<lwe_dimension, p>, ...) ->
// (!Concrete.lwe_ciphertext<lwe_dimension, p>)
//
// becomes:
//
// %0 = linalg.init_tensor [dimension+1] : tensor<dimension+1, i64>
// "BConcreteOp"(%0, %arg0, ...) : (tensor<dimension+1, i64>>,
// tensor<dimension+1, i64>>, ..., ) -> ()
//
// A reference to the preallocated output is always passed as the first
// argument.
template <typename ConcreteOp, typename BConcreteOp>
struct LowToBConcrete : public mlir::OpRewritePattern<ConcreteOp> {
LowToBConcrete(::mlir::MLIRContext *context, mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<ConcreteOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(ConcreteOp concreteOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::concretelang::Concrete::LweCiphertextType resultTy =
((mlir::Type)concreteOp->getResult(0).getType())
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
auto newResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
// %0 = linalg.init_tensor [dimension+1] : tensor<dimension+1, i64>
mlir::Value init = rewriter.replaceOpWithNewOp<mlir::linalg::InitTensorOp>(
concreteOp, newResultTy.getShape(), newResultTy.getElementType());
// "BConcreteOp"(%0, %arg0, ...) : (tensor<dimension+1, i64>>,
// tensor<dimension+1, i64>>, ..., ) -> ()
mlir::SmallVector<mlir::Value, 3> newOperands{init};
newOperands.append(concreteOp.getOperation()->getOperands().begin(),
concreteOp.getOperation()->getOperands().end());
llvm::ArrayRef<::mlir::NamedAttribute> attributes =
concreteOp.getOperation()->getAttrs();
rewriter.create<BConcreteOp>(concreteOp.getLoc(),
mlir::SmallVector<mlir::Type>{}, newOperands,
attributes);
return ::mlir::success();
};
};
// This rewrite pattern transforms any instance of
// `Concrete.glwe_from_table` operators.
//
// Example:
//
// ```mlir
// %0 = "Concrete.glwe_from_table"(%tlu)
// : (tensor<$Dxi64>) ->
// !Concrete.glwe_ciphertext<$polynomialSize,$glweDimension,$p>
// ```
//
// with $D = 2^$p
//
// becomes:
//
// ```mlir
// %0 = linalg.init_tensor [polynomialSize*(glweDimension+1)]
// : tensor<polynomialSize*(glweDimension+1), i64>
// "BConcrete.fill_glwe_from_table" : (%0, polynomialSize, glweDimension, %tlu)
// : tensor<polynomialSize*(glweDimension+1), i64>, i64, i64, tensor<$Dxi64>
// ```
struct GlweFromTablePattern : public mlir::OpRewritePattern<
mlir::concretelang::Concrete::GlweFromTable> {
GlweFromTablePattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::concretelang::Concrete::GlweFromTable>(
context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::concretelang::Concrete::GlweFromTable op,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy =
op.result()
.getType()
.cast<mlir::concretelang::Concrete::GlweCiphertextType>();
auto newResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
// %0 = linalg.init_tensor [polynomialSize*(glweDimension+1)]
// : tensor<polynomialSize*(glweDimension+1), i64>
mlir::Value init = rewriter.replaceOpWithNewOp<mlir::linalg::InitTensorOp>(
op, newResultTy.getShape(), newResultTy.getElementType());
// "BConcrete.fill_glwe_from_table" : (%0, polynomialSize, glweDimension,
// %tlu)
// polynomialSize*(glweDimension+1)
auto polySize = resultTy.getPolynomialSize();
auto glweDimension = resultTy.getGlweDimension();
auto outPrecision = resultTy.getP();
rewriter.create<mlir::concretelang::BConcrete::FillGlweFromTable>(
op.getLoc(), init, polySize, glweDimension, outPrecision, op.table());
return ::mlir::success();
};
};
// This rewrite pattern transforms any instance of
// `tensor.extract_slice` operators that operates on tensor of lwe ciphertext.
//
// Example:
//
// ```mlir
// %0 = tensor.extract_slice %arg0
// [offsets...] [sizes...] [strides...]
// : tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>> to
// tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>>
// ```
//
// becomes:
//
// ```mlir
// %0 = tensor.extract_slice %arg0
// [offsets..., 0] [sizes..., lweDimension+1] [strides..., 1]
// : tensor<...xlweDimension+1,i64> to
// tensor<...xlweDimension+1,i64>
// ```
struct ExtractSliceOpPattern
: public mlir::OpRewritePattern<mlir::tensor::ExtractSliceOp> {
ExtractSliceOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::ExtractSliceOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::ExtractSliceOp extractSliceOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = extractSliceOp.result().getType();
auto resultEltTy =
resultTy.cast<mlir::RankedTensorType>()
.getElementType()
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
auto newResultTy = converter.convertType(resultTy);
// add 0 to the static_offsets
mlir::SmallVector<mlir::Attribute> staticOffsets;
staticOffsets.append(extractSliceOp.static_offsets().begin(),
extractSliceOp.static_offsets().end());
staticOffsets.push_back(rewriter.getI64IntegerAttr(0));
// add the lweSize to the sizes
mlir::SmallVector<mlir::Attribute> staticSizes;
staticSizes.append(extractSliceOp.static_sizes().begin(),
extractSliceOp.static_sizes().end());
staticSizes.push_back(
rewriter.getI64IntegerAttr(resultEltTy.getDimension() + 1));
// add 1 to the strides
mlir::SmallVector<mlir::Attribute> staticStrides;
staticStrides.append(extractSliceOp.static_strides().begin(),
extractSliceOp.static_strides().end());
staticStrides.push_back(rewriter.getI64IntegerAttr(1));
// replace tensor.extract_slice to the new one
rewriter.replaceOpWithNewOp<mlir::tensor::ExtractSliceOp>(
extractSliceOp, newResultTy, extractSliceOp.source(),
extractSliceOp.offsets(), extractSliceOp.sizes(),
extractSliceOp.strides(), rewriter.getArrayAttr(staticOffsets),
rewriter.getArrayAttr(staticSizes),
rewriter.getArrayAttr(staticStrides));
return ::mlir::success();
};
};
// This rewrite pattern transforms any instance of
// `tensor.extract` operators that operates on tensor of lwe ciphertext.
//
// Example:
//
// ```mlir
// %0 = tensor.extract %t[offsets...]
// : tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>>
// ```
//
// becomes:
//
// ```mlir
// %1 = tensor.extract_slice %arg0
// [offsets...] [1..., lweDimension+1] [1...]
// : tensor<...xlweDimension+1,i64> to
// tensor<1...xlweDimension+1,i64>
// %0 = linalg.tensor_collapse_shape %0 [[...]] :
// tensor<1x1xlweDimension+1xi64> into tensor<lweDimension+1xi64>
// ```
//
// TODO: since they are a bug on lowering extract_slice with rank reduction we
// add a linalg.tensor_collapse_shape after the extract_slice without rank
// reduction. See
// https://github.com/zama-ai/concrete-compiler-internal/issues/396.
struct ExtractOpPattern
: public mlir::OpRewritePattern<mlir::tensor::ExtractOp> {
ExtractOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::ExtractOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::ExtractOp extractOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto lweResultTy =
extractOp.result()
.getType()
.dyn_cast_or_null<
mlir::concretelang::Concrete::LweCiphertextType>();
if (lweResultTy == nullptr) {
return mlir::failure();
}
auto newResultTy =
converter.convertType(lweResultTy).cast<mlir::RankedTensorType>();
auto rankOfResult = extractOp.indices().size() + 1;
// [min..., 0] for static_offsets ()
mlir::SmallVector<mlir::Attribute> staticOffsets(
rankOfResult,
rewriter.getI64IntegerAttr(std::numeric_limits<int64_t>::min()));
staticOffsets[staticOffsets.size() - 1] = rewriter.getI64IntegerAttr(0);
// [1..., lweDimension+1] for static_sizes
mlir::SmallVector<mlir::Attribute> staticSizes(
rankOfResult, rewriter.getI64IntegerAttr(1));
staticSizes[staticSizes.size() - 1] = rewriter.getI64IntegerAttr(
newResultTy.getDimSize(newResultTy.getRank() - 1));
// [1...] for static_strides
mlir::SmallVector<mlir::Attribute> staticStrides(
rankOfResult, rewriter.getI64IntegerAttr(1));
// replace tensor.extract_slice to the new one
mlir::SmallVector<int64_t> extractedSliceShape(
extractOp.indices().size() + 1, 0);
extractedSliceShape.reserve(extractOp.indices().size() + 1);
for (size_t i = 0; i < extractedSliceShape.size() - 1; i++) {
extractedSliceShape[i] = 1;
}
extractedSliceShape[extractedSliceShape.size() - 1] =
newResultTy.getDimSize(0);
auto extractedSliceType =
mlir::RankedTensorType::get(extractedSliceShape, rewriter.getI64Type());
auto extractedSlice = rewriter.create<mlir::tensor::ExtractSliceOp>(
extractOp.getLoc(), extractedSliceType, extractOp.tensor(),
extractOp.indices(), mlir::SmallVector<mlir::Value>{},
mlir::SmallVector<mlir::Value>{}, rewriter.getArrayAttr(staticOffsets),
rewriter.getArrayAttr(staticSizes),
rewriter.getArrayAttr(staticStrides));
mlir::ReassociationIndices reassociation;
for (int64_t i = 0; i < extractedSliceType.getRank(); i++) {
reassociation.push_back(i);
}
rewriter.replaceOpWithNewOp<mlir::linalg::TensorCollapseShapeOp>(
extractOp, newResultTy, extractedSlice,
mlir::SmallVector<mlir::ReassociationIndices>{reassociation});
return ::mlir::success();
};
};
// This rewrite pattern transforms any instance of
// `tensor.insert_slice` operators that operates on tensor of lwe ciphertext.
//
// Example:
//
// ```mlir
// %0 = tensor.insert_slice %arg1
// into %arg0[offsets...] [sizes...] [strides...]
// : tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>> into
// tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>>
// ```
//
// becomes:
//
// ```mlir
// %0 = tensor.insert_slice %arg1
// into %arg0[offsets..., 0] [sizes..., lweDimension+1] [strides..., 1]
// : tensor<...xlweDimension+1xi64> into
// tensor<...xlweDimension+1xi64>
// ```
struct InsertSliceOpPattern
: public mlir::OpRewritePattern<mlir::tensor::InsertSliceOp> {
InsertSliceOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::InsertSliceOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::InsertSliceOp insertSliceOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = insertSliceOp.result().getType();
auto newResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
// add 0 to static_offsets
mlir::SmallVector<mlir::Attribute> staticOffsets;
staticOffsets.append(insertSliceOp.static_offsets().begin(),
insertSliceOp.static_offsets().end());
staticOffsets.push_back(rewriter.getI64IntegerAttr(0));
// add lweDimension+1 to static_sizes
mlir::SmallVector<mlir::Attribute> staticSizes;
staticSizes.append(insertSliceOp.static_sizes().begin(),
insertSliceOp.static_sizes().end());
staticSizes.push_back(rewriter.getI64IntegerAttr(
newResultTy.getDimSize(newResultTy.getRank() - 1)));
// add 1 to the strides
mlir::SmallVector<mlir::Attribute> staticStrides;
staticStrides.append(insertSliceOp.static_strides().begin(),
insertSliceOp.static_strides().end());
staticStrides.push_back(rewriter.getI64IntegerAttr(1));
// replace tensor.insert_slice with the new one
rewriter.replaceOpWithNewOp<mlir::tensor::InsertSliceOp>(
insertSliceOp, newResultTy, insertSliceOp.source(),
insertSliceOp.dest(), insertSliceOp.offsets(), insertSliceOp.sizes(),
insertSliceOp.strides(), rewriter.getArrayAttr(staticOffsets),
rewriter.getArrayAttr(staticSizes),
rewriter.getArrayAttr(staticStrides));
return ::mlir::success();
};
};
// This rewrite pattern transforms any instance of
// `tensor.from_elements` operators that operates on tensor of lwe ciphertext.
//
// Example:
//
// ```mlir
// %0 = tensor.from_elements %e0, ..., %e(n-1)
// : tensor<Nx!Concrete.lwe_ciphertext<lweDim,p>>
// ```
//
// becomes:
//
// ```mlir
// %m = memref.alloc() : memref<NxlweDim+1xi64>
// %s0 = memref.subview %m[0, 0][1, lweDim+1][1, 1] : memref<lweDim+1xi64>
// %m0 = memref.buffer_cast %e0 : memref<lweDim+1xi64>
// memref.copy %m0, s0 : memref<lweDim+1xi64> to memref<lweDim+1xi64>
// ...
// %s(n-1) = memref.subview %m[(n-1), 0][1, lweDim+1][1, 1]
// : memref<lweDim+1xi64>
// %m(n-1) = memref.buffer_cast %e(n-1) : memref<lweDim+1xi64>
// memref.copy %e(n-1), s(n-1)
// : memref<lweDim+1xi64> to memref<lweDim+1xi64>
// %0 = memref.tensor_load %m : memref<NxlweDim+1xi64>
// ```
struct FromElementsOpPattern
: public mlir::OpRewritePattern<mlir::tensor::FromElementsOp> {
FromElementsOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<mlir::tensor::FromElementsOp>(context,
benefit) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::FromElementsOp fromElementsOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = fromElementsOp.result().getType();
if (converter.isLegal(resultTy)) {
return mlir::failure();
}
auto eltResultTy =
resultTy.cast<mlir::RankedTensorType>()
.getElementType()
.cast<mlir::concretelang::Concrete::LweCiphertextType>();
auto newTensorResultTy =
converter.convertType(resultTy).cast<mlir::RankedTensorType>();
auto newMemrefResultTy = mlir::MemRefType::get(
newTensorResultTy.getShape(), newTensorResultTy.getElementType());
// %m = memref.alloc() : memref<NxlweDim+1xi64>
auto mOp = rewriter.create<mlir::memref::AllocOp>(fromElementsOp.getLoc(),
newMemrefResultTy);
// for i = 0 to n-1
// %si = memref.subview %m[i, 0][1, lweDim+1][1, 1] : memref<lweDim+1xi64>
// %mi = memref.buffer_cast %ei : memref<lweDim+1xi64>
// memref.copy %mi, si : memref<lweDim+1xi64> to memref<lweDim+1xi64>
auto subviewResultTy = mlir::MemRefType::get(
{eltResultTy.getDimension() + 1}, newMemrefResultTy.getElementType());
auto offset = 0;
for (auto eiOp : fromElementsOp.elements()) {
mlir::SmallVector<mlir::Attribute, 2> staticOffsets{
rewriter.getI64IntegerAttr(offset), rewriter.getI64IntegerAttr(0)};
mlir::SmallVector<mlir::Attribute, 2> staticSizes{
rewriter.getI64IntegerAttr(1),
rewriter.getI64IntegerAttr(eltResultTy.getDimension() + 1)};
mlir::SmallVector<mlir::Attribute, 2> staticStrides{
rewriter.getI64IntegerAttr(1), rewriter.getI64IntegerAttr(1)};
auto siOp = rewriter.create<mlir::memref::SubViewOp>(
fromElementsOp.getLoc(), subviewResultTy, mOp, mlir::ValueRange{},
mlir::ValueRange{}, mlir::ValueRange{},
rewriter.getArrayAttr(staticOffsets),
rewriter.getArrayAttr(staticSizes),
rewriter.getArrayAttr(staticStrides));
auto miOp = rewriter.create<mlir::memref::BufferCastOp>(
fromElementsOp.getLoc(), subviewResultTy, eiOp);
rewriter.create<mlir::memref::CopyOp>(fromElementsOp.getLoc(), miOp,
siOp);
offset++;
}
// Go back to tensor world
// %0 = memref.tensor_load %m : memref<NxlweDim+1xi64>
rewriter.replaceOpWithNewOp<mlir::memref::TensorLoadOp>(fromElementsOp,
mOp);
return ::mlir::success();
};
};
// This template rewrite pattern transforms any instance of
// `ShapeOp` operators that operates on tensor of lwe ciphertext by adding the
// lwe size as a size of the tensor result and by adding a trivial reassociation
// at the end of the reassociations map.
//
// Example:
//
// ```mlir
// %0 = "ShapeOp" %arg0 [reassocations...]
// : tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>> into
// tensor<...x!Concrete.lwe_ciphertext<lweDimension,p>>
// ```
//
// becomes:
//
// ```mlir
// %0 = "ShapeOp" %arg0 [reassociations..., [inRank or outRank]]
// : tensor<...xlweDimesion+1xi64> into
// tensor<...xlweDimesion+1xi64>
// ```
template <typename ShapeOp, bool inRank>
struct TensorShapeOpPattern : public mlir::OpRewritePattern<ShapeOp> {
TensorShapeOpPattern(::mlir::MLIRContext *context,
mlir::PatternBenefit benefit = 1)
: ::mlir::OpRewritePattern<ShapeOp>(context, benefit) {}
::mlir::LogicalResult
matchAndRewrite(ShapeOp shapeOp,
::mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
auto resultTy = shapeOp.result().getType();
auto newResultTy =
((mlir::Type)converter.convertType(resultTy)).cast<mlir::MemRefType>();
// add [rank] to reassociations
auto oldReassocs = shapeOp.getReassociationIndices();
mlir::SmallVector<mlir::ReassociationIndices> newReassocs;
newReassocs.append(oldReassocs.begin(), oldReassocs.end());
mlir::ReassociationIndices lweAssoc;
auto reassocTy =
((mlir::Type)converter.convertType(
(inRank ? shapeOp.src() : shapeOp.result()).getType()))
.cast<mlir::MemRefType>();
lweAssoc.push_back(reassocTy.getRank() - 1);
newReassocs.push_back(lweAssoc);
rewriter.replaceOpWithNewOp<ShapeOp>(shapeOp, newResultTy, shapeOp.src(),
newReassocs);
return ::mlir::success();
};
};
// Add the instantiated TensorShapeOpPattern rewrite pattern with the `ShapeOp`
// to the patterns set and populate the conversion target.
template <typename ShapeOp, bool inRank>
void insertTensorShapeOpPattern(mlir::MLIRContext &context,
mlir::RewritePatternSet &patterns,
mlir::ConversionTarget &target) {
patterns.insert<TensorShapeOpPattern<ShapeOp, inRank>>(&context);
target.addDynamicallyLegalOp<ShapeOp>([&](ShapeOp op) {
ConcreteToBConcreteTypeConverter converter;
return converter.isLegal(op.result().getType());
});
}
// This template rewrite pattern transforms any instance of
// `MemrefOp` operators that returns a memref of lwe ciphertext to the same
// operator but which returns the bufferized lwe ciphertext.
//
// Example:
//
// ```mlir
// %0 = "MemrefOp"(...) : ... -> memref<...x!Concrete.lwe_ciphertext<lweDim,p>>
// ```
//
// becomes:
//
// ```mlir
// %0 = "MemrefOp"(...) : ... -> memref<...xlweDim+1xi64>
// ```
template <typename MemrefOp>
struct MemrefOpPattern : public mlir::OpRewritePattern<MemrefOp> {
MemrefOpPattern(mlir::MLIRContext *context, mlir::PatternBenefit benefit = 1)
: mlir::OpRewritePattern<MemrefOp>(context, benefit) {}
mlir::LogicalResult
matchAndRewrite(MemrefOp memrefOp,
mlir::PatternRewriter &rewriter) const override {
ConcreteToBConcreteTypeConverter converter;
mlir::SmallVector<mlir::Type, 1> convertedTypes;
if (converter.convertTypes(memrefOp->getResultTypes(), convertedTypes)
.failed()) {
return mlir::failure();
}
rewriter.replaceOpWithNewOp<MemrefOp>(memrefOp, convertedTypes,
memrefOp->getOperands(),
memrefOp->getAttrs());
return ::mlir::success();
};
};
template <typename MemrefOp>
void insertMemrefOpPatternImpl(mlir::MLIRContext &context,
mlir::RewritePatternSet &patterns,
mlir::ConversionTarget &target) {
patterns.insert<MemrefOpPattern<MemrefOp>>(&context);
target.addDynamicallyLegalOp<MemrefOp>([&](MemrefOp op) {
ConcreteToBConcreteTypeConverter converter;
return converter.isLegal(op->getResultTypes());
});
}
// Add the instantiated MemrefOpPattern rewrite pattern with the `MemrefOp`
// to the patterns set and populate the conversion target.
template <typename... MemrefOp>
void insertMemrefOpPattern(mlir::MLIRContext &context,
mlir::RewritePatternSet &patterns,
mlir::ConversionTarget &target) {
(void)std::initializer_list<int>{
0,
(insertMemrefOpPatternImpl<MemrefOp>(context, patterns, target), 0)...};
}
// cc from Loops.cpp
static mlir::SmallVector<mlir::Value>
makeCanonicalAffineApplies(mlir::OpBuilder &b, mlir::Location loc,
mlir::AffineMap map,
mlir::ArrayRef<mlir::Value> vals) {
if (map.isEmpty())
return {};
assert(map.getNumInputs() == vals.size());
mlir::SmallVector<mlir::Value> res;
res.reserve(map.getNumResults());
auto dims = map.getNumDims();
for (auto e : map.getResults()) {
auto exprMap = mlir::AffineMap::get(dims, map.getNumSymbols(), e);
mlir::SmallVector<mlir::Value> operands(vals.begin(), vals.end());
canonicalizeMapAndOperands(&exprMap, &operands);
res.push_back(b.create<mlir::AffineApplyOp>(loc, exprMap, operands));
}
return res;
}
static std::pair<mlir::Value, mlir::Value>
makeOperandLoadOrSubview(mlir::OpBuilder &builder, mlir::Location loc,
mlir::ArrayRef<mlir::Value> allIvs,
mlir::linalg::LinalgOp linalgOp,
mlir::OpOperand *operand) {
ConcreteToBConcreteTypeConverter converter;
mlir::Value opVal = operand->get();
mlir::MemRefType opTy = opVal.getType().cast<mlir::MemRefType>();
if (auto lweType =
opTy.getElementType()
.dyn_cast_or_null<
mlir::concretelang::Concrete::LweCiphertextType>()) {
// For memref of ciphertexts operands create the inner memref
// subview to the ciphertext, and go back to the tensor type as BConcrete
// operators works with tensor.
// %op : memref<dim...xConcrete.lwe_ciphertext<lweDim,p>>
// %opInner = memref.subview %opInner[offsets...][1...][1,...]
// : memref<...xConcrete.lwe_ciphertext<lweDim,p>> to
// memref<Concrete.lwe_ciphertext<lweDim,p>>
auto tensorizedLweTy =
converter.convertType(lweType).cast<mlir::RankedTensorType>();
auto subviewResultTy = mlir::MemRefType::get(
tensorizedLweTy.getShape(), tensorizedLweTy.getElementType());
auto offsets = makeCanonicalAffineApplies(
builder, loc, linalgOp.getTiedIndexingMap(operand), allIvs);
mlir::SmallVector<mlir::Attribute> staticOffsets(
opTy.getRank(),
builder.getI64IntegerAttr(std::numeric_limits<int64_t>::min()));
mlir::SmallVector<mlir::Attribute> staticSizes(
opTy.getRank(), builder.getI64IntegerAttr(1));
mlir::SmallVector<mlir::Attribute> staticStrides(
opTy.getRank(), builder.getI64IntegerAttr(1));
auto subViewOp = builder.create<mlir::memref::SubViewOp>(
loc, subviewResultTy, opVal, offsets, mlir::ValueRange{},
mlir::ValueRange{}, builder.getArrayAttr(staticOffsets),
builder.getArrayAttr(staticSizes), builder.getArrayAttr(staticStrides));
return std::pair<mlir::Value, mlir::Value>(
subViewOp, builder.create<mlir::memref::TensorLoadOp>(loc, subViewOp));
} else {
// For memref of non ciphertexts load the value from the memref.
// with %op : memref<dim...xip>
// %opInner = memref.load %op[offsets...] : memref<dim...xip>
auto offsets = makeCanonicalAffineApplies(
builder, loc, linalgOp.getTiedIndexingMap(operand), allIvs);
return std::pair<mlir::Value, mlir::Value>(
nullptr,
builder.create<mlir::memref::LoadOp>(loc, operand->get(), offsets));
}
}
static void
inlineRegionAndEmitTensorStore(mlir::OpBuilder &builder, mlir::Location loc,
mlir::linalg::LinalgOp linalgOp,
llvm::ArrayRef<mlir::Value> indexedValues,
mlir::ValueRange outputBuffers) {
// Clone the block with the new operands
auto &block = linalgOp->getRegion(0).front();
mlir::BlockAndValueMapping map;
map.map(block.getArguments(), indexedValues);
for (auto &op : block.without_terminator()) {
auto *newOp = builder.clone(op, map);
map.map(op.getResults(), newOp->getResults());
}
// Create memref.tensor_store operation for each terminator operands
auto *terminator = block.getTerminator();
for (mlir::OpOperand &operand : terminator->getOpOperands()) {
mlir::Value toStore = map.lookupOrDefault(operand.get());
builder.create<mlir::memref::TensorStoreOp>(
loc, toStore, outputBuffers[operand.getOperandNumber()]);
}
}
template <typename LoopType>
class LinalgRewritePattern
: public mlir::OpInterfaceConversionPattern<mlir::linalg::LinalgOp> {
public:
using mlir::OpInterfaceConversionPattern<
mlir::linalg::LinalgOp>::OpInterfaceConversionPattern;
mlir::LogicalResult
matchAndRewrite(mlir::linalg::LinalgOp linalgOp,
mlir::ArrayRef<mlir::Value> operands,
mlir::ConversionPatternRewriter &rewriter) const override {
assert(linalgOp.hasBufferSemantics() &&
"expected linalg op with buffer semantics");
auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc());
auto iteratorTypes =
llvm::to_vector<4>(linalgOp.iterator_types().getValue());
mlir::SmallVector<mlir::Value> allIvs;
mlir::linalg::GenerateLoopNest<LoopType>::doit(
rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes,
[&](mlir::OpBuilder &builder, mlir::Location loc, mlir::ValueRange ivs,
mlir::ValueRange operandValuesToUse) -> mlir::scf::ValueVector {
// Keep indexed values to replace the linalg.generic block arguments
// by them
mlir::SmallVector<mlir::Value> indexedValues;
indexedValues.reserve(linalgOp.getNumInputsAndOutputs());
assert(
operandValuesToUse == linalgOp->getOperands() &&
"expect operands are captured and not passed by loop argument");
allIvs.append(ivs.begin(), ivs.end());
// For all input operands create the inner operand
for (mlir::OpOperand *inputOperand : linalgOp.getInputOperands()) {
auto innerOperand = makeOperandLoadOrSubview(
builder, loc, allIvs, linalgOp, inputOperand);
indexedValues.push_back(innerOperand.second);
}
// For all output operands create the inner operand
assert(linalgOp.getOutputOperands() ==
linalgOp.getOutputBufferOperands() &&
"expect only memref as output operands");
mlir::SmallVector<mlir::Value> outputBuffers;
for (mlir::OpOperand *outputOperand : linalgOp.getOutputOperands()) {
auto innerOperand = makeOperandLoadOrSubview(
builder, loc, allIvs, linalgOp, outputOperand);
indexedValues.push_back(innerOperand.second);
assert(innerOperand.first != nullptr &&
"Expected a memref subview as output buffer");
outputBuffers.push_back(innerOperand.first);
}
// Finally inline the linalgOp region
inlineRegionAndEmitTensorStore(builder, loc, linalgOp, indexedValues,
outputBuffers);
return mlir::scf::ValueVector{};
});
rewriter.eraseOp(linalgOp);
return mlir::success();
};
};
void ConcreteToBConcretePass::runOnOperation() {
auto op = this->getOperation();
// First of all we transform LinalgOp that work on tensor of ciphertext to
// work on memref.
{
mlir::ConversionTarget target(getContext());
mlir::BufferizeTypeConverter converter;
// Mark all Standard operations legal.
target
.addLegalDialect<mlir::arith::ArithmeticDialect, mlir::AffineDialect,
mlir::memref::MemRefDialect, mlir::StandardOpsDialect,
mlir::tensor::TensorDialect>();
// Mark all Linalg operations illegal as long as they work on encrypted
// tensors.
target.addDynamicallyLegalOp<mlir::linalg::GenericOp, mlir::linalg::YieldOp,
mlir::linalg::CopyOp>(
[&](mlir::Operation *op) { return converter.isLegal(op); });
mlir::RewritePatternSet patterns(&getContext());
mlir::linalg::populateLinalgBufferizePatterns(converter, patterns);
if (failed(applyPartialConversion(op, target, std::move(patterns)))) {
signalPassFailure();
return;
}
}
// Then convert ciphertext to tensor or add a dimension to tensor of
// ciphertext and memref of ciphertext
{
mlir::ConversionTarget target(getContext());
ConcreteToBConcreteTypeConverter converter;
mlir::OwningRewritePatternList patterns(&getContext());
// All BConcrete ops are legal after the conversion
target.addLegalDialect<mlir::concretelang::BConcrete::BConcreteDialect>();
// Add Concrete ops are illegal after the conversion unless those which are
// explicitly marked as legal (more or less operators that didn't work on
// ciphertexts)
target.addIllegalDialect<mlir::concretelang::Concrete::ConcreteDialect>();
target.addLegalOp<mlir::concretelang::Concrete::EncodeIntOp>();
target.addLegalOp<mlir::concretelang::Concrete::IntToCleartextOp>();
// Add patterns to convert the zero ops to tensor.generate
patterns
.insert<ZeroOpPattern<mlir::concretelang::Concrete::ZeroTensorLWEOp>,
ZeroOpPattern<mlir::concretelang::Concrete::ZeroLWEOp>>(
&getContext());
target.addLegalOp<mlir::tensor::GenerateOp, mlir::tensor::YieldOp>();
// Add patterns to trivialy convert Concrete op to the equivalent
// BConcrete op
target.addLegalOp<mlir::linalg::InitTensorOp>();
patterns.insert<
LowToBConcrete<mlir::concretelang::Concrete::AddLweCiphertextsOp,
mlir::concretelang::BConcrete::AddLweBuffersOp>,
LowToBConcrete<
mlir::concretelang::Concrete::AddPlaintextLweCiphertextOp,
mlir::concretelang::BConcrete::AddPlaintextLweBufferOp>,
LowToBConcrete<
mlir::concretelang::Concrete::MulCleartextLweCiphertextOp,
mlir::concretelang::BConcrete::MulCleartextLweBufferOp>,
LowToBConcrete<
mlir::concretelang::Concrete::MulCleartextLweCiphertextOp,
mlir::concretelang::BConcrete::MulCleartextLweBufferOp>,
LowToBConcrete<mlir::concretelang::Concrete::NegateLweCiphertextOp,
mlir::concretelang::BConcrete::NegateLweBufferOp>,
LowToBConcrete<mlir::concretelang::Concrete::KeySwitchLweOp,
mlir::concretelang::BConcrete::KeySwitchLweBufferOp>,
LowToBConcrete<mlir::concretelang::Concrete::BootstrapLweOp,
mlir::concretelang::BConcrete::BootstrapLweBufferOp>>(
&getContext());
patterns.insert<GlweFromTablePattern>(&getContext());
// Add patterns to rewrite tensor operators that works on encrypted
// tensors
patterns.insert<ExtractSliceOpPattern, ExtractOpPattern,
InsertSliceOpPattern, FromElementsOpPattern>(&getContext());
target.addDynamicallyLegalOp<
mlir::tensor::ExtractSliceOp, mlir::tensor::ExtractOp,
mlir::tensor::InsertSliceOp, mlir::tensor::FromElementsOp>(
[&](mlir::Operation *op) {
return converter.isLegal(op->getResult(0).getType());
});
target.addLegalOp<mlir::memref::CopyOp,
mlir::linalg::TensorCollapseShapeOp>();
// Add patterns to rewrite some of memref ops that was introduced by the
// linalg bufferization of encrypted tensor (first conversion of this pass)
insertTensorShapeOpPattern<mlir::memref::ExpandShapeOp, false>(
getContext(), patterns, target);
insertTensorShapeOpPattern<mlir::memref::CollapseShapeOp, true>(
getContext(), patterns, target);
// Add patterns to rewrite linalg op to nested loops with views on
// ciphertexts
patterns.insert<LinalgRewritePattern<mlir::scf::ForOp>>(converter,
&getContext());
target.addLegalOp<mlir::arith::ConstantOp, mlir::scf::ForOp,
mlir::scf::YieldOp, mlir::AffineApplyOp,
mlir::memref::SubViewOp, mlir::memref::LoadOp,
mlir::memref::TensorStoreOp>();
// Add patterns to do the conversion of func
mlir::populateFuncOpTypeConversionPattern(patterns, converter);
target.addDynamicallyLegalOp<mlir::FuncOp>([&](mlir::FuncOp funcOp) {
return converter.isSignatureLegal(funcOp.getType()) &&
converter.isLegal(&funcOp.getBody());
});
// Add patterns to convert some memref operators that is generated by
// previous step
insertMemrefOpPattern<mlir::memref::AllocOp, mlir::memref::BufferCastOp,
mlir::memref::TensorLoadOp>(getContext(), patterns,
target);
// Conversion of RT Dialect Ops
patterns.add<mlir::concretelang::GenericTypeConverterPattern<
mlir::concretelang::RT::DataflowTaskOp>>(patterns.getContext(),
converter);
mlir::concretelang::addDynamicallyLegalTypeOp<
mlir::concretelang::RT::DataflowTaskOp>(target, converter);
// Apply conversion
if (mlir::applyPartialConversion(op, target, std::move(patterns))
.failed()) {
this->signalPassFailure();
}
}
}
namespace mlir {
namespace concretelang {
std::unique_ptr<OperationPass<ModuleOp>>
createConvertConcreteToBConcretePass() {
return std::make_unique<ConcreteToBConcretePass>();
}
} // namespace concretelang
} // namespace mlir