mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 12:15:09 -05:00
121 lines
3.9 KiB
Python
121 lines
3.9 KiB
Python
"""Tests for the torch to numpy module."""
|
|
import numpy
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
|
|
from concrete.torch import NumpyModule
|
|
|
|
|
|
class CNN(nn.Module):
|
|
"""Torch CNN model for the tests."""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(3, 6, 5)
|
|
self.pool = nn.AvgPool2d(2, 2)
|
|
self.conv2 = nn.Conv2d(6, 16, 5)
|
|
self.fc1 = nn.Linear(16 * 5 * 5, 120)
|
|
self.fc2 = nn.Linear(120, 84)
|
|
self.fc3 = nn.Linear(84, 10)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass."""
|
|
x = self.pool(torch.relu(self.conv1(x)))
|
|
x = self.pool(torch.relu(self.conv2(x)))
|
|
x = torch.flatten(x, 1)
|
|
x = torch.relu(self.fc1(x))
|
|
x = torch.relu(self.fc2(x))
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
class FC(nn.Module):
|
|
"""Torch model for the tests"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(in_features=32 * 32 * 3, out_features=128)
|
|
self.sigmoid1 = nn.Sigmoid()
|
|
self.fc2 = nn.Linear(in_features=128, out_features=64)
|
|
self.sigmoid2 = nn.Sigmoid()
|
|
self.fc3 = nn.Linear(in_features=64, out_features=64)
|
|
self.sigmoid3 = nn.Sigmoid()
|
|
self.fc4 = nn.Linear(in_features=64, out_features=64)
|
|
self.sigmoid4 = nn.Sigmoid()
|
|
self.fc5 = nn.Linear(in_features=64, out_features=10)
|
|
|
|
def forward(self, x):
|
|
"""Forward pass."""
|
|
out = self.fc1(x)
|
|
out = self.sigmoid1(out)
|
|
out = self.fc2(out)
|
|
out = self.sigmoid2(out)
|
|
out = self.fc3(out)
|
|
out = self.sigmoid3(out)
|
|
out = self.fc4(out)
|
|
out = self.sigmoid4(out)
|
|
out = self.fc5(out)
|
|
|
|
return out
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, input_shape",
|
|
[
|
|
pytest.param(FC, (100, 32 * 32 * 3)),
|
|
],
|
|
)
|
|
def test_torch_to_numpy(model, input_shape, seed_torch):
|
|
"""Test the different model architecture from torch numpy."""
|
|
|
|
# Seed torch
|
|
seed_torch()
|
|
# Define the torch model
|
|
torch_fc_model = model()
|
|
# Create random input
|
|
torch_input_1 = torch.randn(input_shape)
|
|
# Predict with torch model
|
|
torch_predictions = torch_fc_model(torch_input_1).detach().numpy()
|
|
# Create corresponding numpy model
|
|
numpy_fc_model = NumpyModule(torch_fc_model)
|
|
# Torch input to numpy
|
|
numpy_input_1 = torch_input_1.detach().numpy()
|
|
# Predict with numpy model
|
|
numpy_predictions = numpy_fc_model(numpy_input_1)
|
|
|
|
# Test: the output of the numpy model is the same as the torch model.
|
|
assert numpy_predictions.shape == torch_predictions.shape
|
|
# Test: prediction from the numpy model are the same as the torh model.
|
|
assert numpy.isclose(torch_predictions, numpy_predictions, rtol=10 - 3).all()
|
|
|
|
# Test: dynamics between layers is working (quantized input and activations)
|
|
torch_input_2 = torch.randn(input_shape)
|
|
# Make sure both inputs are different
|
|
assert (torch_input_1 != torch_input_2).any()
|
|
# Predict with torch
|
|
torch_predictions = torch_fc_model(torch_input_2).detach().numpy()
|
|
# Torch input to numpy
|
|
numpy_input_2 = torch_input_2.detach().numpy()
|
|
# Numpy predictions using the previous model
|
|
numpy_predictions = numpy_fc_model(numpy_input_2)
|
|
assert numpy.isclose(torch_predictions, numpy_predictions, rtol=10 - 3).all()
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, incompatible_layer",
|
|
[pytest.param(CNN, "Conv2d")],
|
|
)
|
|
def test_raises(model, incompatible_layer, seed_torch):
|
|
"""Function to test incompatible layers."""
|
|
|
|
seed_torch()
|
|
torch_incompatible_model = model()
|
|
expected_errmsg = (
|
|
f"The following module is currently not implemented: {incompatible_layer}. "
|
|
f"Please stick to the available torch modules: "
|
|
f"{', '.join(sorted(module.__name__ for module in NumpyModule.IMPLEMENTED_MODULES))}."
|
|
)
|
|
with pytest.raises(ValueError, match=expected_errmsg):
|
|
NumpyModule(torch_incompatible_model)
|