Files
concrete/tests/quantization/test_compilation.py

93 lines
3.1 KiB
Python

"""Test Neural Networks compilations"""
import numpy
import pytest
from torch import nn
from concrete.quantization import PostTrainingAffineQuantization, QuantizedArray
from concrete.torch import NumpyModule
# INPUT_OUTPUT_FEATURE is the number of input and output of each of the network layers.
# (as well as the input of the network itself)
# Currently, with 7 bits maximum, we can use 15 weights max in the theoretical case.
INPUT_OUTPUT_FEATURE = [1, 2, 3]
class FC(nn.Module):
"""Torch model for the tests"""
def __init__(self, input_output):
super().__init__()
self.fc1 = nn.Linear(in_features=input_output, out_features=input_output)
self.sigmoid1 = nn.Sigmoid()
self.fc2 = nn.Linear(in_features=input_output, out_features=input_output)
def forward(self, x):
"""Forward pass."""
out = self.fc1(x)
out = self.sigmoid1(out)
out = self.fc2(out)
return out
@pytest.mark.parametrize(
"model",
[pytest.param(FC)],
)
@pytest.mark.parametrize(
"input_output_feature",
[pytest.param(input_output_feature) for input_output_feature in INPUT_OUTPUT_FEATURE],
)
def test_quantized_module_compilation(
input_output_feature, model, seed_torch, default_compilation_configuration
):
"""Test a neural network compilation for FHE inference."""
# Seed torch
seed_torch()
n_bits = 2
# Define an input shape (n_examples, n_features)
input_shape = (50, input_output_feature)
# Build a random Quantized Fully Connected Neural Network
# Define the torch model
torch_fc_model = model(input_output_feature)
# Create random input
numpy_input = numpy.random.uniform(-100, 100, size=input_shape)
# Create corresponding numpy model
numpy_fc_model = NumpyModule(torch_fc_model)
# Quantize with post-training static method
post_training_quant = PostTrainingAffineQuantization(n_bits, numpy_fc_model)
quantized_model = post_training_quant.quantize_module(numpy_input)
# Quantize input
q_input = QuantizedArray(n_bits, numpy_input)
quantized_model(q_input)
# Compile
quantized_model.compile(q_input, default_compilation_configuration)
dequant_predictions = quantized_model.forward_and_dequant(q_input)
nb_tries = 5
# Compare predictions between FHE and QuantizedModule
for _ in range(nb_tries):
homomorphic_predictions = []
for x_q in q_input.qvalues:
homomorphic_predictions.append(
quantized_model.forward_fhe.run(numpy.array([x_q]).astype(numpy.uint8))
)
homomorphic_predictions = quantized_model.dequantize_output(
numpy.array(homomorphic_predictions, dtype=numpy.float32)
)
homomorphic_predictions = homomorphic_predictions.reshape(dequant_predictions.shape)
# Make sure homomorphic_predictions are the same as dequant_predictions
if numpy.isclose(homomorphic_predictions.ravel(), dequant_predictions.ravel()).all():
return
# Bad computation after nb_tries
raise AssertionError(f"bad computation after {nb_tries} tries")