mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 03:55:04 -05:00
Also introduce new compilation options for parallel execution bump concrete-compiler to 0.6.0 which support loop parallelization
45 lines
1.5 KiB
Python
45 lines
1.5 KiB
Python
"""Test module for convolution compilation and execution."""
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import concrete.numpy as hnp
|
|
from concrete.common.data_types.integers import Integer
|
|
from concrete.common.values.tensors import EncryptedTensor
|
|
from concrete.numpy.compile import compile_numpy_function
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_shape, weight_shape",
|
|
[
|
|
pytest.param((1, 1, 4, 4), (1, 1, 2, 2)),
|
|
pytest.param((4, 3, 4, 4), (2, 3, 2, 2)),
|
|
],
|
|
)
|
|
@pytest.mark.parametrize("strides", [(2, 2)])
|
|
@pytest.mark.parametrize("dilations", [(1, 1)])
|
|
@pytest.mark.parametrize("has_bias", [True, False])
|
|
def test_compile_and_run(
|
|
input_shape, weight_shape, strides, dilations, has_bias, default_compilation_configuration
|
|
):
|
|
"""Test function to make sure compilation and execution of conv2d works properly"""
|
|
if has_bias:
|
|
bias = np.random.randint(0, 4, size=(weight_shape[0],))
|
|
else:
|
|
bias = None
|
|
weight = np.random.randint(0, 4, size=weight_shape)
|
|
|
|
def conv(x):
|
|
return hnp.conv2d(x, weight, bias, strides=strides, dilations=dilations)
|
|
|
|
compiler_engine = compile_numpy_function(
|
|
conv,
|
|
{"x": EncryptedTensor(Integer(64, False), input_shape)},
|
|
[np.random.randint(0, 4, size=input_shape) for i in range(20)],
|
|
default_compilation_configuration,
|
|
)
|
|
x = np.random.randint(0, 4, size=input_shape, dtype=np.uint8)
|
|
expected = conv(x)
|
|
result = compiler_engine.encrypt_run_decrypt(x)
|
|
assert (expected == result).all()
|