Files
concrete/compilers/concrete-compiler/compiler/include/concretelang/Support/CompilerEngine.h

396 lines
14 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete/blob/main/LICENSE.txt
// for license information.
#ifndef CONCRETELANG_SUPPORT_COMPILER_ENGINE_H
#define CONCRETELANG_SUPPORT_COMPILER_ENGINE_H
#include "capnp/message.h"
#include "concrete-protocol.capnp.h"
#include "concretelang/Common/Protocol.h"
#include "concretelang/Conversion/Utils/GlobalFHEContext.h"
#include "concretelang/Support/Encodings.h"
#include "concretelang/Support/ProgramInfoGeneration.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Pass/Pass.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/SourceMgr.h"
#include <memory>
#include <optional>
using concretelang::protocol::Message;
namespace mlir {
namespace concretelang {
bool getEmitGPUOption();
/// Compilation context that acts as the root owner of LLVM and MLIR
/// data structures directly and indirectly referenced by artefacts
/// produced by the `CompilerEngine`.
class CompilationContext {
public:
CompilationContext();
~CompilationContext();
mlir::MLIRContext *getMLIRContext();
llvm::LLVMContext *getLLVMContext();
static std::shared_ptr<CompilationContext> createShared();
protected:
mlir::MLIRContext *mlirContext;
llvm::LLVMContext *llvmContext;
};
enum Backend {
CPU,
GPU,
};
/// Compilation options allows to configure the compilation pipeline.
struct CompilationOptions {
std::optional<mlir::concretelang::V0FHEConstraint> v0FHEConstraints;
std::optional<mlir::concretelang::V0Parameter> v0Parameter;
/// largeIntegerParameter force the compiler engine to lower FHE.eint using
/// the large integers strategy with the given parameters.
std::optional<mlir::concretelang::LargeIntegerParameter>
largeIntegerParameter;
bool verifyDiagnostics;
/// Simulate options
bool simulate;
/// Parallelization options
bool autoParallelize;
bool loopParallelize;
bool dataflowParallelize;
/// Compression options
bool compressEvaluationKeys;
bool compressInputCiphertexts;
/// Optimizer options
optimizer::Config optimizerConfig;
/// use GPU during execution by generating GPU operations if possible
bool emitGPUOps;
/// Other options
bool batchTFHEOps;
int64_t maxBatchSize;
bool emitSDFGOps;
bool unrollLoopsWithSDFGConvertibleOps;
bool optimizeTFHE;
std::optional<std::vector<int64_t>> fhelinalgTileSizes;
/// When decomposing big integers into chunks, chunkSize is the total number
/// of bits used for the message, including the carry, while chunkWidth is
/// only the number of bits used during encoding and decoding of a big integer
bool chunkIntegers;
unsigned int chunkSize;
unsigned int chunkWidth;
/// When compiling from a dialect lower than FHE, one needs to provide
/// encodings info manually to allow the client lib to be generated.
std::optional<Message<concreteprotocol::ProgramEncodingInfo>> encodings;
bool skipProgramInfo;
bool enableTluFusing;
bool printTluFusing;
CompilationOptions()
: v0FHEConstraints(std::nullopt), verifyDiagnostics(false),
/// Simulate options
simulate(false),
// Parallelization options
autoParallelize(false), loopParallelize(true),
dataflowParallelize(false),
/// Compression options
compressEvaluationKeys(false), compressInputCiphertexts(false),
/// Optimizer options
optimizerConfig(optimizer::DEFAULT_CONFIG),
/// GPU
emitGPUOps(false),
/// Other options
batchTFHEOps(false), maxBatchSize(std::numeric_limits<int64_t>::max()),
emitSDFGOps(false), unrollLoopsWithSDFGConvertibleOps(false),
optimizeTFHE(true), chunkIntegers(false), chunkSize(4), chunkWidth(2),
encodings(std::nullopt), enableTluFusing(true), printTluFusing(false){};
/// @brief Constructor for CompilationOptions with default parameters for a
/// specific backend.
/// @param backend The backend to target.
CompilationOptions(enum Backend backend) : CompilationOptions() {
switch (backend) {
case Backend::CPU:
loopParallelize = true;
break;
case Backend::GPU:
loopParallelize = true;
batchTFHEOps = true;
emitGPUOps = true;
emitSDFGOps = true;
char *env = getenv("SDFG_MAX_BATCH_SIZE");
if (env != nullptr) {
int64_t targetMax = strtoul(env, NULL, 10);
if (targetMax > 0)
maxBatchSize = targetMax;
}
break;
}
}
};
/// Set the global compilation options for the current compilation.
void setCurrentCompilationOptions(CompilationOptions options);
/// Get the global compilation options for the current compilation.
CompilationOptions getCurrentCompilationOptions();
/// Print table lookup fusing.
void printTluFusing(mlir::Value v1, mlir::Value v2, mlir::Value v1v2);
class CompilerEngine {
public:
/// Result of an invocation of the `CompilerEngine` with optional
/// fields for the results produced by different stages.
class CompilationResult {
public:
CompilationResult(std::shared_ptr<CompilationContext> compilationContext =
CompilationContext::createShared())
: compilationContext(compilationContext) {}
std::optional<mlir::OwningOpRef<mlir::ModuleOp>> mlirModuleRef;
std::optional<Message<concreteprotocol::ProgramInfo>> programInfo;
std::optional<ProgramCompilationFeedback> feedback;
std::unique_ptr<llvm::Module> llvmModule;
std::optional<mlir::concretelang::V0FHEContext> fheContext;
protected:
std::shared_ptr<CompilationContext> compilationContext;
};
class Library {
std::string outputDirPath;
std::vector<std::string> objectsPath;
/// Path to the runtime library. Will be linked to the output library if set
std::string runtimeLibraryPath;
bool cleanUp;
mlir::concretelang::ProgramCompilationFeedback compilationFeedback;
Message<concreteprotocol::ProgramInfo> programInfo;
public:
/// Create a library instance on which you can add compilation results.
/// Then you can emit a library file with the given path.
/// cleanUp at false keeps intermediate .obj files for later use.
Library(std::string outputDirPath, std::string runtimeLibraryPath = "",
bool cleanUp = true)
: outputDirPath(outputDirPath), runtimeLibraryPath(runtimeLibraryPath),
cleanUp(cleanUp), programInfo() {}
/// Sets the compilation result used by the library
llvm::Expected<std::string>
setCompilationResult(CompilationResult &compilation);
/// Emit the library artifacts with the previously added compilation result
llvm::Error emitArtifacts(bool sharedLib, bool staticLib,
bool clientParameters, bool compilationFeedback);
/// After a shared library has been emitted, its path is here
std::string sharedLibraryPath;
/// After a static library has been emitted, its path is here
std::string staticLibraryPath;
/// Returns the program info of the library.
Message<concreteprotocol::ProgramInfo> getProgramInfo() const;
/// Returns the path to the output dir.
const std::string &getOutputDirPath() const;
/// Returns the path of the shared library
static std::string getSharedLibraryPath(std::string outputDirPath);
/// Returns the path of the static library
static std::string getStaticLibraryPath(std::string outputDirPath);
/// Returns the path of the program info
static std::string getProgramInfoPath(std::string outputDirPath);
/// Returns the path of the compilation feedback
static std::string getCompilationFeedbackPath(std::string outputDirPath);
// For advanced use
const static std::string OBJECT_EXT, LINKER, LINKER_SHARED_OPT, AR,
AR_STATIC_OPT, DOT_STATIC_LIB_EXT, DOT_SHARED_LIB_EXT;
void addExtraObjectFilePath(std::string objectFilePath);
llvm::Expected<std::string>
emit(std::string path, std::string dotExt, std::string linker,
std::optional<std::vector<std::string>> extraArgs = {});
~Library();
private:
/// Emit a shared library with the previously added compilation result
llvm::Expected<std::string> emitStatic();
/// Emit a shared library with the previously added compilation result
llvm::Expected<std::string> emitShared();
/// Emit a json ProgramInfo corresponding to library content
llvm::Expected<std::string> emitProgramInfoJSON();
/// Emit a json CompilationFeedback corresponding to library content
llvm::Expected<std::string> emitCompilationFeedbackJSON();
};
/// Specification of the exit stage of the compilation pipeline
enum class Target {
/// Only read sources and produce corresponding MLIR module
ROUND_TRIP,
/// Read sources and exit before any lowering
FHE,
/// Read sources, lower all FHELinalg operations to operations
/// from the Linalg dialect
FHE_LINALG_GENERIC,
/// Read sources and lower all the FHELinalg operations to FHE
/// operations, dump after data-flow parallelization
FHE_DF_PARALLELIZED,
/// Read sources and lower all the FHELinalg operations to FHE operations
/// and scf loops
FHE_NO_LINALG,
/// Read sources and lower all FHE operations to unparameterized TFHE
/// operations
TFHE,
/// Read sources and lower all FHE operations to TFHE
/// operations, then parametrize the TFHE operations
PARAMETRIZED_TFHE,
/// Batch TFHE operations
BATCHED_TFHE,
/// Read sources and lower all FHE operations to normalized TFHE
/// operations
NORMALIZED_TFHE,
/// Read sources and lower all FHE operations to simulated TFHE
SIMULATED_TFHE,
/// Read sources and lower all FHE and TFHE operations to Concrete
/// operations
CONCRETE,
/// Read sources and lower all FHE and TFHE operations to Concrete
/// then extract SDFG operations
SDFG,
/// Read sources and lower all FHE, TFHE and Concrete
/// operations to canonical MLIR dialects. Cryptographic operations
/// are lowered to invocations of the concrete library.
STD,
/// Read sources and lower all FHE, TFHE and Concrete
/// operations to operations from the LLVM dialect. Cryptographic
/// operations are lowered to invocations of the concrete library.
LLVM,
/// Same as `LLVM`, but lowers to actual LLVM IR instead of the
/// LLVM dialect
LLVM_IR,
/// Same as `LLVM_IR`, but invokes the LLVM optimization pipeline
/// to produce optimized LLVM IR
OPTIMIZED_LLVM_IR,
/// Same as `OPTIMIZED_LLVM_IR`, but compiles and add an object file to a
/// futur library
LIBRARY
};
CompilerEngine(std::shared_ptr<CompilationContext> compilationContext)
: overrideMaxEintPrecision(), overrideMaxMANP(), compilerOptions(),
generateProgramInfo(true),
enablePass([](mlir::Pass *pass) { return true; }),
compilationContext(compilationContext) {}
llvm::Expected<CompilationResult>
compile(llvm::StringRef s, Target target,
std::optional<std::shared_ptr<Library>> lib = {});
llvm::Expected<CompilationResult>
compile(std::unique_ptr<llvm::MemoryBuffer> buffer, Target target,
std::optional<std::shared_ptr<Library>> lib = {});
llvm::Expected<CompilationResult>
compile(llvm::SourceMgr &sm, Target target,
std::optional<std::shared_ptr<Library>> lib = {});
llvm::Expected<CompilationResult>
compile(mlir::ModuleOp module, Target target,
std::optional<std::shared_ptr<Library>> lib = {});
llvm::Expected<CompilerEngine::Library>
compile(std::vector<std::string> inputs, std::string outputDirPath,
std::string runtimeLibraryPath = "", bool generateSharedLib = true,
bool generateStaticLib = true, bool generateClientParameters = true,
bool generateCompilationFeedback = true);
/// Compile and emit artifact to the given outputDirPath from an LLVM source
/// manager.
llvm::Expected<CompilerEngine::Library>
compile(llvm::SourceMgr &sm, std::string outputDirPath,
std::string runtimeLibraryPath = "", bool generateSharedLib = true,
bool generateStaticLib = true, bool generateClientParameters = true,
bool generateCompilationFeedback = true);
llvm::Expected<CompilerEngine::Library>
compile(mlir::ModuleOp module, std::string outputDirPath,
std::string runtimeLibraryPath = "", bool generateSharedLib = true,
bool generateStaticLib = true, bool generateClientParameters = true,
bool generateCompilationFeedback = true);
void setCompilationOptions(CompilationOptions options) {
setCurrentCompilationOptions(options);
compilerOptions = std::move(options);
if (compilerOptions.v0FHEConstraints.has_value()) {
setFHEConstraints(*compilerOptions.v0FHEConstraints);
}
}
CompilationOptions &getCompilationOptions() { return compilerOptions; }
void setFHEConstraints(const mlir::concretelang::V0FHEConstraint &c);
void setMaxEintPrecision(size_t v);
void setMaxMANP(size_t v);
void setGenerateProgramInfo(bool v);
void setEnablePass(std::function<bool(mlir::Pass *)> enablePass);
protected:
std::optional<size_t> overrideMaxEintPrecision;
std::optional<size_t> overrideMaxMANP;
CompilationOptions compilerOptions;
bool generateProgramInfo;
std::function<bool(mlir::Pass *)> enablePass;
std::shared_ptr<CompilationContext> compilationContext;
private:
llvm::Expected<std::optional<optimizer::Description>>
getConcreteOptimizerDescription(CompilationResult &res);
llvm::Error determineFHEParameters(CompilationResult &res);
mlir::LogicalResult
materializeOptimizerPartitionFrontiers(CompilationResult &res);
};
} // namespace concretelang
} // namespace mlir
#endif