Files
concrete/compilers/concrete-compiler/compiler/lib/Conversion/TFHEToConcrete/TFHEToConcrete.cpp

990 lines
41 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete/blob/main/LICENSE.txt
// for license information.
#include <iostream>
#include <mlir/Dialect/Bufferization/IR/Bufferization.h>
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "concretelang/Conversion/Passes.h"
#include "concretelang/Conversion/Utils/Dialects/SCF.h"
#include "concretelang/Conversion/Utils/FuncConstOpConversion.h"
#include "concretelang/Conversion/Utils/RTOpConverter.h"
#include "concretelang/Conversion/Utils/RegionOpTypeConverterPattern.h"
#include "concretelang/Conversion/Utils/ReinstantiatingOpTypeConversion.h"
#include "concretelang/Conversion/Utils/TensorOpTypeConversion.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteDialect.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteOps.h"
#include "concretelang/Dialect/Concrete/IR/ConcreteTypes.h"
#include "concretelang/Dialect/RT/IR/RTOps.h"
#include "concretelang/Dialect/TFHE/IR/TFHEDialect.h"
#include "concretelang/Dialect/TFHE/IR/TFHEOps.h"
#include "concretelang/Dialect/TFHE/IR/TFHETypes.h"
#include "concretelang/Dialect/Tracing/IR/TracingOps.h"
#include "concretelang/Support/Constants.h"
namespace TFHE = mlir::concretelang::TFHE;
namespace Concrete = mlir::concretelang::Concrete;
namespace Tracing = mlir::concretelang::Tracing;
namespace {
struct TFHEToConcretePass : public TFHEToConcreteBase<TFHEToConcretePass> {
void runOnOperation() final;
};
} // namespace
using mlir::concretelang::TFHE::GLWECipherTextType;
/// TFHEToConcreteTypeConverter is a TypeConverter that transform
/// `TFHE.glwe<sk(id){dimension,1}>` to `tensor<dimension+1, i64>>`
/// `tensor<...xTFHE.glwe<sk(id){dimension,1}>>` to
/// `tensor<...xdimension+1, i64>>`
class TFHEToConcreteTypeConverter : public mlir::TypeConverter {
public:
TFHEToConcreteTypeConverter() {
addConversion([](mlir::Type type) { return type; });
addConversion([&](GLWECipherTextType type) {
assert(type.getKey().isNormalized() && "keys should be normalized");
assert(type.getKey().getNormalized().value().polySize == 1 &&
"converter doesn't support polynomialSize > 1");
llvm::SmallVector<int64_t, 2> shape;
shape.push_back(type.getKey().getNormalized().value().dimension + 1);
return mlir::RankedTensorType::get(
shape, mlir::IntegerType::get(type.getContext(), 64));
});
addConversion([&](mlir::RankedTensorType type) {
auto glwe = type.getElementType().dyn_cast_or_null<GLWECipherTextType>();
if (glwe == nullptr) {
return mlir::RankedTensorType::get(
type.getShape(), this->convertType(type.getElementType()))
.cast<mlir::Type>();
}
mlir::SmallVector<int64_t> newShape;
newShape.reserve(type.getShape().size() + 1);
newShape.append(type.getShape().begin(), type.getShape().end());
assert(glwe.getKey().isNormalized());
newShape.push_back(glwe.getKey().getNormalized().value().dimension + 1);
mlir::Type r = mlir::RankedTensorType::get(
newShape, mlir::IntegerType::get(type.getContext(), 64));
return r;
});
addConversion([&](mlir::concretelang::RT::FutureType type) {
return mlir::concretelang::RT::FutureType::get(
this->convertType(type.dyn_cast<mlir::concretelang::RT::FutureType>()
.getElementType()));
});
addConversion([&](mlir::concretelang::RT::PointerType type) {
return mlir::concretelang::RT::PointerType::get(
this->convertType(type.dyn_cast<mlir::concretelang::RT::PointerType>()
.getElementType()));
});
}
};
namespace {
struct SubIntGLWEOpPattern
: public mlir::OpConversionPattern<TFHE::SubGLWEIntOp> {
SubIntGLWEOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: mlir::OpConversionPattern<TFHE::SubGLWEIntOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(TFHE::SubGLWEIntOp subOp, TFHE::SubGLWEIntOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
mlir::Value negated = rewriter.create<Concrete::NegateLweTensorOp>(
subOp.getLoc(), adaptor.getB().getType(), adaptor.getB());
rewriter.replaceOpWithNewOp<Concrete::AddPlaintextLweTensorOp>(
subOp, this->getTypeConverter()->convertType(subOp.getType()), negated,
subOp.getA());
return mlir::success();
}
};
struct BootstrapGLWEOpPattern
: public mlir::OpConversionPattern<TFHE::BootstrapGLWEOp> {
BootstrapGLWEOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: mlir::OpConversionPattern<TFHE::BootstrapGLWEOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(TFHE::BootstrapGLWEOp bsOp,
TFHE::BootstrapGLWEOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TFHE::GLWECipherTextType resultType =
bsOp.getType().cast<TFHE::GLWECipherTextType>();
TFHE::GLWECipherTextType inputType =
bsOp.getCiphertext().getType().cast<TFHE::GLWECipherTextType>();
auto polySize = adaptor.getKey().getPolySize();
auto glweDimension = adaptor.getKey().getGlweDim();
auto levels = adaptor.getKey().getLevels();
auto baseLog = adaptor.getKey().getBaseLog();
auto inputLweDimension =
inputType.getKey().getNormalized().value().dimension;
auto bskIndex = bsOp.getKeyAttr().getIndex();
rewriter.replaceOpWithNewOp<Concrete::BootstrapLweTensorOp>(
bsOp, this->getTypeConverter()->convertType(resultType),
adaptor.getCiphertext(), adaptor.getLookupTable(), inputLweDimension,
polySize, levels, baseLog, glweDimension, bskIndex);
return mlir::success();
}
};
struct WopPBSGLWEOpPattern
: public mlir::OpConversionPattern<TFHE::WopPBSGLWEOp> {
WopPBSGLWEOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: mlir::OpConversionPattern<TFHE::WopPBSGLWEOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(TFHE::WopPBSGLWEOp op, TFHE::WopPBSGLWEOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto bsBaseLog = adaptor.getBsk().getBaseLog();
auto bsLevels = adaptor.getBsk().getLevels();
auto cbsBaseLog = adaptor.getCbsBaseLog();
auto cbsLevels = adaptor.getCbsLevels();
auto ksBaseLog = adaptor.getKsk().getBaseLog();
auto ksLevels = adaptor.getKsk().getLevels();
auto pksBaseLog = adaptor.getPksk().getBaseLog();
auto pksLevels = adaptor.getPksk().getLevels();
auto pksInnerLweDim = adaptor.getPksk().getInnerLweDim();
auto pksOutputPolySize = adaptor.getPksk().getOutputPolySize();
auto crtDecomposition = adaptor.getCrtDecompositionAttr();
auto resultType = op.getType();
auto kskIndex = op.getKskAttr().getIndex();
auto bskIndex = op.getBskAttr().getIndex();
auto pkskIndex = op.getPkskAttr().getIndex();
rewriter.replaceOpWithNewOp<Concrete::WopPBSCRTLweTensorOp>(
op, this->getTypeConverter()->convertType(resultType),
adaptor.getCiphertexts(), adaptor.getLookupTable(), bsLevels, bsBaseLog,
ksLevels, ksBaseLog, pksInnerLweDim, pksOutputPolySize, pksLevels,
pksBaseLog, cbsLevels, cbsBaseLog, crtDecomposition, kskIndex, bskIndex,
pkskIndex);
return mlir::success();
}
};
struct BatchedBootstrapGLWEOpPattern
: public mlir::OpConversionPattern<TFHE::BatchedBootstrapGLWEOp> {
BatchedBootstrapGLWEOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: mlir::OpConversionPattern<TFHE::BatchedBootstrapGLWEOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(TFHE::BatchedBootstrapGLWEOp bbsOp,
TFHE::BatchedBootstrapGLWEOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TFHE::GLWECipherTextType inputElementType =
bbsOp.getCiphertexts()
.getType()
.cast<mlir::RankedTensorType>()
.getElementType()
.cast<TFHE::GLWECipherTextType>();
auto polySize = adaptor.getKey().getPolySize();
auto glweDimension = adaptor.getKey().getGlweDim();
auto levels = adaptor.getKey().getLevels();
auto baseLog = adaptor.getKey().getBaseLog();
auto inputLweDimension =
inputElementType.getKey().getNormalized().value().dimension;
auto bskIndex = adaptor.getKey().getIndex();
rewriter.replaceOpWithNewOp<Concrete::BatchedBootstrapLweTensorOp>(
bbsOp, this->getTypeConverter()->convertType(bbsOp.getType()),
adaptor.getCiphertexts(), adaptor.getLookupTable(), inputLweDimension,
polySize, levels, baseLog, glweDimension, bskIndex);
return mlir::success();
}
};
struct BatchedMappedBootstrapGLWEOpPattern
: public mlir::OpConversionPattern<TFHE::BatchedMappedBootstrapGLWEOp> {
BatchedMappedBootstrapGLWEOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: mlir::OpConversionPattern<TFHE::BatchedMappedBootstrapGLWEOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(TFHE::BatchedMappedBootstrapGLWEOp bmbsOp,
TFHE::BatchedMappedBootstrapGLWEOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TFHE::GLWECipherTextType inputElementType =
bmbsOp.getCiphertexts()
.getType()
.cast<mlir::RankedTensorType>()
.getElementType()
.cast<TFHE::GLWECipherTextType>();
auto polySize = adaptor.getKey().getPolySize();
auto glweDimension = adaptor.getKey().getGlweDim();
auto levels = adaptor.getKey().getLevels();
auto baseLog = adaptor.getKey().getBaseLog();
auto inputLweDimension =
inputElementType.getKey().getNormalized().value().dimension;
auto bskIndex = bmbsOp.getKeyAttr().getIndex();
rewriter.replaceOpWithNewOp<Concrete::BatchedMappedBootstrapLweTensorOp>(
bmbsOp, this->getTypeConverter()->convertType(bmbsOp.getType()),
adaptor.getCiphertexts(), adaptor.getLookupTable(), inputLweDimension,
polySize, levels, baseLog, glweDimension, bskIndex);
return mlir::success();
}
};
struct KeySwitchGLWEOpPattern
: public mlir::OpConversionPattern<TFHE::KeySwitchGLWEOp> {
KeySwitchGLWEOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: mlir::OpConversionPattern<TFHE::KeySwitchGLWEOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(TFHE::KeySwitchGLWEOp ksOp,
TFHE::KeySwitchGLWEOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TFHE::GLWECipherTextType resultType =
ksOp.getType().cast<TFHE::GLWECipherTextType>();
TFHE::GLWECipherTextType inputType =
ksOp.getCiphertext().getType().cast<TFHE::GLWECipherTextType>();
auto levels = adaptor.getKey().getLevels();
auto baseLog = adaptor.getKey().getBaseLog();
auto inputDim = inputType.getKey().getNormalized().value().dimension;
auto outputDim = resultType.getKey().getNormalized().value().dimension;
auto kskIndex = ksOp.getKeyAttr().getIndex();
rewriter.replaceOpWithNewOp<Concrete::KeySwitchLweTensorOp>(
ksOp, this->getTypeConverter()->convertType(resultType),
adaptor.getCiphertext(), levels, baseLog, inputDim, outputDim,
kskIndex);
return mlir::success();
}
};
struct BatchedKeySwitchGLWEOpPattern
: public mlir::OpConversionPattern<TFHE::BatchedKeySwitchGLWEOp> {
BatchedKeySwitchGLWEOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: mlir::OpConversionPattern<TFHE::BatchedKeySwitchGLWEOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(TFHE::BatchedKeySwitchGLWEOp bksOp,
TFHE::BatchedKeySwitchGLWEOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
TFHE::GLWECipherTextType resultElementType =
bksOp.getType()
.cast<mlir::RankedTensorType>()
.getElementType()
.cast<TFHE::GLWECipherTextType>();
TFHE::GLWECipherTextType inputElementType =
bksOp.getCiphertexts()
.getType()
.cast<mlir::RankedTensorType>()
.getElementType()
.cast<TFHE::GLWECipherTextType>();
auto levels = adaptor.getKey().getLevels();
auto baseLog = adaptor.getKey().getBaseLog();
auto inputDim = inputElementType.getKey().getNormalized().value().dimension;
auto outputDim =
resultElementType.getKey().getNormalized().value().dimension;
auto kskIndex = adaptor.getKey().getIndex();
rewriter.replaceOpWithNewOp<Concrete::BatchedKeySwitchLweTensorOp>(
bksOp, this->getTypeConverter()->convertType(bksOp.getType()),
adaptor.getCiphertexts(), levels, baseLog, inputDim, outputDim,
kskIndex);
return mlir::success();
}
};
struct TracePlaintextOpPattern
: public mlir::OpRewritePattern<Tracing::TracePlaintextOp> {
TracePlaintextOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &converter,
mlir::PatternBenefit benefit = 100)
: mlir::OpRewritePattern<Tracing::TracePlaintextOp>(context, benefit) {}
mlir::LogicalResult
matchAndRewrite(Tracing::TracePlaintextOp op,
mlir::PatternRewriter &rewriter) const override {
auto inputWidth =
op.getPlaintext().getType().cast<mlir::IntegerType>().getWidth();
if (inputWidth == 64) {
op->setAttr("input_width", rewriter.getI64IntegerAttr(inputWidth));
return mlir::success();
}
auto extendedInput = rewriter.create<mlir::arith::ExtUIOp>(
op.getLoc(), rewriter.getI64Type(), op.getPlaintext());
auto newOp = rewriter.replaceOpWithNewOp<Tracing::TracePlaintextOp>(
op, extendedInput, op.getMsgAttr(), op.getNmsbAttr());
newOp->setAttr("input_width", rewriter.getI64IntegerAttr(inputWidth));
return ::mlir::success();
}
};
template <typename ZeroOp>
struct ZeroOpPattern : public mlir::OpConversionPattern<ZeroOp> {
ZeroOpPattern(mlir::MLIRContext *context, mlir::TypeConverter &converter)
: mlir::OpConversionPattern<ZeroOp>(
converter, context, mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(ZeroOp zeroOp, typename ZeroOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto newResultTy = this->getTypeConverter()->convertType(zeroOp.getType());
auto generateBody = [&](mlir::OpBuilder &nestedBuilder,
mlir::Location nestedLoc,
mlir::ValueRange blockArgs) {
// %c0 = 0 : i64
auto cstOp = nestedBuilder.create<mlir::arith::ConstantOp>(
nestedLoc, nestedBuilder.getI64IntegerAttr(0));
// tensor.yield %z : !FHE.eint<p>
nestedBuilder.create<mlir::tensor::YieldOp>(nestedLoc, cstOp.getResult());
};
// tensor.generate
rewriter.replaceOpWithNewOp<mlir::tensor::GenerateOp>(
zeroOp, newResultTy, mlir::ValueRange{}, generateBody);
return ::mlir::success();
};
};
/// Pattern that rewrites the ExtractSlice operation, taking into account the
/// additional LWE dimension introduced during type conversion
struct ExtractSliceOpPattern
: public mlir::OpConversionPattern<mlir::tensor::ExtractSliceOp> {
ExtractSliceOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: ::mlir::OpConversionPattern<mlir::tensor::ExtractSliceOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::ExtractSliceOp extractSliceOp,
mlir::tensor::ExtractSliceOp::Adaptor adaptor,
::mlir::ConversionPatternRewriter &rewriter) const override {
// is not a tensor of GLWEs that need to be extended with the LWE dimension
if (this->getTypeConverter()->isLegal(extractSliceOp.getType())) {
return mlir::failure();
}
auto resultTy = extractSliceOp.getResult().getType();
auto newResultTy = this->getTypeConverter()
->convertType(resultTy)
.cast<mlir::RankedTensorType>();
// add 0 to the static_offsets
mlir::SmallVector<int64_t> staticOffsets;
staticOffsets.append(adaptor.getStaticOffsets().begin(),
adaptor.getStaticOffsets().end());
staticOffsets.push_back(0);
// add the lweSize to the sizes
mlir::SmallVector<int64_t> staticSizes;
staticSizes.append(adaptor.getStaticSizes().begin(),
adaptor.getStaticSizes().end());
staticSizes.push_back(newResultTy.getDimSize(newResultTy.getRank() - 1));
// add 1 to the strides
mlir::SmallVector<int64_t> staticStrides;
staticStrides.append(adaptor.getStaticStrides().begin(),
adaptor.getStaticStrides().end());
staticStrides.push_back(1);
// replace tensor.extract_slice to the new one
rewriter.replaceOpWithNewOp<mlir::tensor::ExtractSliceOp>(
extractSliceOp, newResultTy, adaptor.getSource(), adaptor.getOffsets(),
adaptor.getSizes(), adaptor.getStrides(),
rewriter.getDenseI64ArrayAttr(staticOffsets),
rewriter.getDenseI64ArrayAttr(staticSizes),
rewriter.getDenseI64ArrayAttr(staticStrides));
return ::mlir::success();
};
};
/// Pattern that rewrites the Extract operation, taking into account the
/// additional LWE dimension introduced during type conversion
struct ExtractOpPattern
: public mlir::OpConversionPattern<mlir::tensor::ExtractOp> {
ExtractOpPattern(::mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: ::mlir::OpConversionPattern<mlir::tensor::ExtractOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::ExtractOp extractOp,
mlir::tensor::ExtractOp::Adaptor adaptor,
::mlir::ConversionPatternRewriter &rewriter) const override {
// is not a tensor of GLWEs that need to be extended with the LWE dimension
if (this->getTypeConverter()->isLegal(extractOp.getType())) {
return mlir::failure();
}
auto newResultType =
this->getTypeConverter()->convertType(extractOp.getType());
// If the extraction is not on a tensor of ciphertexts, just
// convert the type and keep the rest as-is.
if (!extractOp.getType().isa<GLWECipherTextType>()) {
rewriter.replaceOpWithNewOp<mlir::tensor::ExtractOp>(
extractOp, newResultType, adaptor.getTensor(), adaptor.getIndices());
return mlir::success();
}
mlir::RankedTensorType newResultTensorType =
newResultType.cast<mlir::RankedTensorType>();
auto tensorRank =
adaptor.getTensor().getType().cast<mlir::RankedTensorType>().getRank();
// [min..., 0] for static_offsets ()
mlir::SmallVector<int64_t> staticOffsets(
tensorRank, std::numeric_limits<int64_t>::min());
staticOffsets[staticOffsets.size() - 1] = 0;
// [1..., lweDimension+1] for static_sizes or
// [1..., nbBlock, lweDimension+1]
mlir::SmallVector<int64_t> staticSizes(tensorRank, 1);
staticSizes[staticSizes.size() - 1] =
newResultTensorType.getDimSize(newResultTensorType.getRank() - 1);
// [1...] for static_strides
mlir::SmallVector<int64_t> staticStrides(tensorRank, 1);
rewriter.replaceOpWithNewOp<mlir::tensor::ExtractSliceOp>(
extractOp, newResultTensorType, adaptor.getTensor(),
adaptor.getIndices(), mlir::SmallVector<mlir::Value>{},
mlir::SmallVector<mlir::Value>{},
rewriter.getDenseI64ArrayAttr(staticOffsets),
rewriter.getDenseI64ArrayAttr(staticSizes),
rewriter.getDenseI64ArrayAttr(staticStrides));
return ::mlir::success();
};
};
/// Pattern that rewrites the InsertSlice-like operation, taking into
/// account the additional LWE dimension introduced during type
/// conversion
template <typename OpTy>
struct InsertSliceOpPattern : public mlir::OpConversionPattern<OpTy> {
InsertSliceOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: ::mlir::OpConversionPattern<OpTy>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(OpTy insertSliceOp, typename OpTy::Adaptor adaptor,
::mlir::ConversionPatternRewriter &rewriter) const override {
bool needsExtraDimension = insertSliceOp.getDest()
.getType()
.getElementType()
.template isa<GLWECipherTextType>();
mlir::RankedTensorType newDestTy = ((mlir::Type)adaptor.getDest().getType())
.cast<mlir::RankedTensorType>();
mlir::SmallVector<mlir::OpFoldResult> offsets = getMixedValues(
adaptor.getStaticOffsets(), adaptor.getOffsets(), rewriter);
mlir::SmallVector<mlir::OpFoldResult> sizes =
getMixedValues(adaptor.getStaticSizes(), adaptor.getSizes(), rewriter);
mlir::SmallVector<mlir::OpFoldResult> strides = getMixedValues(
adaptor.getStaticStrides(), adaptor.getStrides(), rewriter);
if (needsExtraDimension) {
// add 0 to offsets
offsets.push_back(rewriter.getI64IntegerAttr(0));
// add lweDimension+1 to sizes
sizes.push_back(rewriter.getI64IntegerAttr(
newDestTy.getDimSize(newDestTy.getRank() - 1)));
// add 1 to the strides
strides.push_back(rewriter.getI64IntegerAttr(1));
}
// replace insert slice-like operation with the new one
rewriter.replaceOpWithNewOp<OpTy>(insertSliceOp, adaptor.getSource(),
adaptor.getDest(), offsets, sizes,
strides);
return ::mlir::success();
}
};
/// Pattern that rewrites the Insert operation, taking into account the
/// additional LWE dimension introduced during type conversion
struct InsertOpPattern
: public mlir::OpConversionPattern<mlir::tensor::InsertOp> {
InsertOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: ::mlir::OpConversionPattern<mlir::tensor::InsertOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::InsertOp insertOp,
mlir::tensor::InsertOp::Adaptor adaptor,
::mlir::ConversionPatternRewriter &rewriter) const override {
// is not a tensor of GLWEs that need to be extended with the LWE dimension
if (this->getTypeConverter()->isLegal(insertOp.getType())) {
return mlir::failure();
}
mlir::RankedTensorType newResultTy =
this->getTypeConverter()
->convertType(insertOp.getResult().getType())
.cast<mlir::RankedTensorType>();
// add zeros to static offsets
mlir::SmallVector<mlir::OpFoldResult> offsets;
offsets.append(adaptor.getIndices().begin(), adaptor.getIndices().end());
offsets.push_back(rewriter.getIndexAttr(0));
// Inserting a smaller tensor into a (potentially) bigger one. Set
// dimensions for all leading dimensions of the target tensor not
// present in the source to 1.
mlir::SmallVector<mlir::OpFoldResult> sizes(adaptor.getIndices().size(),
rewriter.getI64IntegerAttr(1));
// Add size for the bufferized source element
sizes.push_back(rewriter.getI64IntegerAttr(
newResultTy.getDimSize(newResultTy.getRank() - 1)));
// Set stride of all dimensions to 1
mlir::SmallVector<mlir::OpFoldResult> strides(
newResultTy.getRank(), rewriter.getI64IntegerAttr(1));
// replace tensor.insert_slice with the new one
rewriter.replaceOpWithNewOp<mlir::tensor::InsertSliceOp>(
insertOp, adaptor.getScalar(), adaptor.getDest(), offsets, sizes,
strides);
return ::mlir::success();
};
};
/// FromElementsOpPatterns transform each tensor.from_elements that operates on
/// TFHE.glwe
///
/// refs: check_tests/Conversion/TFHEToConcrete/tensor_from_elements.mlir
struct FromElementsOpPattern
: public mlir::OpConversionPattern<mlir::tensor::FromElementsOp> {
FromElementsOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: ::mlir::OpConversionPattern<mlir::tensor::FromElementsOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(mlir::tensor::FromElementsOp fromElementsOp,
mlir::tensor::FromElementsOp::Adaptor adaptor,
::mlir::ConversionPatternRewriter &rewriter) const override {
auto converter = this->getTypeConverter();
// is not a tensor of GLWEs that need to be extended with the LWE dimension
if (converter->isLegal(fromElementsOp.getType())) {
return mlir::failure();
}
// If the element type is not directly a cipher text type, the
// shape of the output does not change. In this case, the op type
// can be preserved and only type conversion is necessary.
if (!fromElementsOp.getType().getElementType().isa<GLWECipherTextType>()) {
rewriter.replaceOpWithNewOp<mlir::tensor::FromElementsOp>(
fromElementsOp, converter->convertType(fromElementsOp.getType()),
adaptor.getOperands());
return mlir::success();
}
auto resultTy = fromElementsOp.getResult().getType();
if (converter->isLegal(resultTy)) {
return mlir::failure();
}
auto oldTensorResultTy = resultTy.cast<mlir::RankedTensorType>();
auto oldRank = oldTensorResultTy.getRank();
auto newTensorResultTy =
converter->convertType(resultTy).cast<mlir::RankedTensorType>();
auto newRank = newTensorResultTy.getRank();
auto newShape = newTensorResultTy.getShape();
mlir::Value tensor = rewriter.create<mlir::bufferization::AllocTensorOp>(
fromElementsOp.getLoc(), newTensorResultTy, mlir::ValueRange{});
// sizes are [1, ..., 1, diffShape...]
llvm::SmallVector<mlir::OpFoldResult> sizes(oldRank,
rewriter.getI64IntegerAttr(1));
for (auto i = newRank - oldRank; i > 0; i--) {
sizes.push_back(rewriter.getI64IntegerAttr(*(newShape.end() - i)));
}
// strides are [1, ..., 1]
llvm::SmallVector<mlir::OpFoldResult> oneStrides(
newShape.size(), rewriter.getI64IntegerAttr(1));
// start with offets [0, ..., 0]
llvm::SmallVector<int64_t> currentOffsets(newRank, 0);
// for each elements insert_slice with right offet
for (auto elt : llvm::enumerate(adaptor.getElements())) {
// Just create offsets as attributes
llvm::SmallVector<mlir::OpFoldResult, 4> offsets;
offsets.reserve(currentOffsets.size());
std::transform(currentOffsets.begin(), currentOffsets.end(),
std::back_inserter(offsets),
[&](auto v) { return rewriter.getI64IntegerAttr(v); });
mlir::tensor::InsertSliceOp insOp =
rewriter.create<mlir::tensor::InsertSliceOp>(
fromElementsOp.getLoc(),
/* src: */ elt.value(),
/* dst: */ tensor,
/* offs: */ offsets,
/* sizes: */ sizes,
/* strides: */ oneStrides);
tensor = insOp.getResult();
// Increment the offsets
for (auto i = newRank - 2; i >= 0; i--) {
if (currentOffsets[i] == newShape[i] - 1) {
currentOffsets[i] = 0;
continue;
}
currentOffsets[i]++;
break;
}
}
rewriter.replaceOp(fromElementsOp, tensor);
return ::mlir::success();
};
};
// This template rewrite pattern transforms any instance of
// `ShapeOp` operators that operates on tensor of lwe ciphertext by adding
// the lwe size as a size of the tensor result and by adding a trivial
// reassociation at the end of the reassociations map.
//
// Example:
//
// ```mlir
// %0 = "ShapeOp" %arg0 [reassocations...]
// : tensor<...x!TFHE.glwe<sk(id){dimension,1}>> into
// tensor<...x!TFHE.glwe<sk(id){dimension,1}>>
// ```
//
// becomes:
//
// ```mlir
// %0 = "ShapeOp" %arg0 [reassociations..., [inRank or outRank]]
// : tensor<...xdimension+1xi64> into
// tensor<...xdimension+1xi64>
// ```
template <typename ShapeOp, typename ShapeOpAdaptor, typename VecTy,
bool inRank>
struct TensorShapeOpPattern : public mlir::OpConversionPattern<ShapeOp> {
TensorShapeOpPattern(mlir::MLIRContext *context,
mlir::TypeConverter &typeConverter)
: ::mlir::OpConversionPattern<ShapeOp>(
typeConverter, context,
mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
::mlir::LogicalResult
matchAndRewrite(ShapeOp shapeOp, ShapeOpAdaptor adaptor,
::mlir::ConversionPatternRewriter &rewriter) const override {
// is not a tensor of GLWEs that need to be extended with the LWE dimension
if (this->getTypeConverter()->isLegal(shapeOp.getType())) {
return mlir::failure();
}
auto newResultTy =
((mlir::Type)this->getTypeConverter()->convertType(shapeOp.getType()))
.cast<VecTy>();
auto reassocTy =
((mlir::Type)this->getTypeConverter()->convertType(
(inRank ? shapeOp.getSrc() : shapeOp.getResult()).getType()))
.cast<VecTy>();
auto oldReassocs = shapeOp.getReassociationIndices();
mlir::SmallVector<mlir::ReassociationIndices> newReassocs;
newReassocs.append(oldReassocs.begin(), oldReassocs.end());
// add [rank] to reassociations
{
mlir::ReassociationIndices lweAssoc;
lweAssoc.push_back(reassocTy.getRank() - 1);
newReassocs.push_back(lweAssoc);
}
rewriter.replaceOpWithNewOp<ShapeOp>(shapeOp, newResultTy, adaptor.getSrc(),
newReassocs);
return ::mlir::success();
};
};
/// Add the instantiated TensorShapeOpPattern rewrite pattern with the
/// `ShapeOp` to the patterns set and populate the conversion target.
template <typename ShapeOp, typename ShapeOpAdaptor, typename VecTy,
bool inRank>
void insertTensorShapeOpPattern(mlir::MLIRContext &context,
mlir::TypeConverter &converter,
mlir::RewritePatternSet &patterns,
mlir::ConversionTarget &target) {
patterns.insert<TensorShapeOpPattern<ShapeOp, ShapeOpAdaptor, VecTy, inRank>>(
&context, converter);
target.addDynamicallyLegalOp<ShapeOp>([&](mlir::Operation *op) {
return converter.isLegal(op->getResultTypes()) &&
converter.isLegal(op->getOperandTypes());
});
}
// The pass is supposed to endup with no TFHE.glwe type. Tensors should be
// extended with an additional dimension at the end, and some patterns in this
// pass are fully dedicated to rewrite tensor ops with this additional dimension
// in mind
void TFHEToConcretePass::runOnOperation() {
auto op = this->getOperation();
mlir::ConversionTarget target(getContext());
TFHEToConcreteTypeConverter converter;
// Mark ops from the target dialect as legal operations
target.addLegalDialect<mlir::concretelang::Concrete::ConcreteDialect>();
// Make sure that no ops from `TFHE` remain after the lowering
target.addIllegalDialect<mlir::concretelang::TFHE::TFHEDialect>();
// Legalize arith.constant operations introduced by some patterns
target.addLegalOp<mlir::arith::ConstantOp>();
// Make sure that no ops `linalg.generic` that have illegal types
target.addDynamicallyLegalOp<mlir::linalg::GenericOp,
mlir::tensor::GenerateOp, mlir::scf::ForOp>(
[&](mlir::Operation *op) {
return (converter.isLegal(op->getOperandTypes()) &&
converter.isLegal(op->getResultTypes()) &&
converter.isLegal(op->getRegion(0).front().getArgumentTypes()));
});
target.addDynamicallyLegalOp<mlir::scf::ForallOp>(
[&](mlir::scf::ForallOp op) {
return (
converter.isLegal(op->getOperandTypes()) &&
converter.isLegal(op->getResultTypes()) &&
converter.isLegal(op->getRegion(0).front().getArgumentTypes()) &&
converter.isLegal(op.getOutputs().getTypes()));
});
target.addDynamicallyLegalOp<mlir::scf::InParallelOp>(
[&](mlir::scf::InParallelOp op) {
return converter.isLegal(&op.getBodyRegion());
});
// Make sure that func has legal signature
target.addDynamicallyLegalOp<mlir::func::FuncOp>(
[&](mlir::func::FuncOp funcOp) {
return converter.isSignatureLegal(funcOp.getFunctionType()) &&
converter.isLegal(&funcOp.getBody());
});
target.addDynamicallyLegalOp<mlir::func::ConstantOp>(
[&](mlir::func::ConstantOp op) {
return FunctionConstantOpConversion<
TFHEToConcreteTypeConverter>::isLegal(op, converter);
});
// Add all patterns required to lower all ops from `TFHE` to
// `Concrete`
mlir::RewritePatternSet patterns(&getContext());
patterns.add<FunctionConstantOpConversion<TFHEToConcreteTypeConverter>>(
&getContext(), converter);
// populateWithGeneratedTFHEToConcrete(patterns);
// Generic patterns
patterns.insert<
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::AddGLWEOp,
mlir::concretelang::Concrete::AddLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::AddGLWEIntOp,
mlir::concretelang::Concrete::AddPlaintextLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::MulGLWEIntOp,
mlir::concretelang::Concrete::MulCleartextLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::NegGLWEOp,
mlir::concretelang::Concrete::NegateLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::EncodeExpandLutForBootstrapOp,
mlir::concretelang::Concrete::EncodeExpandLutForBootstrapTensorOp,
true>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::EncodeLutForCrtWopPBSOp,
mlir::concretelang::Concrete::EncodeLutForCrtWopPBSTensorOp, true>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::EncodePlaintextWithCrtOp,
mlir::concretelang::Concrete::EncodePlaintextWithCrtTensorOp, true>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::ABatchedAddGLWEIntOp,
mlir::concretelang::Concrete::BatchedAddPlaintextLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::ABatchedAddGLWEIntCstOp,
mlir::concretelang::Concrete::BatchedAddPlaintextCstLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::ABatchedAddGLWEOp,
mlir::concretelang::Concrete::BatchedAddLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::BatchedMulGLWEIntOp,
mlir::concretelang::Concrete::BatchedMulCleartextLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::BatchedMulGLWEIntCstOp,
mlir::concretelang::Concrete::BatchedMulCleartextCstLweTensorOp>,
mlir::concretelang::GenericOneToOneOpConversionPattern<
mlir::concretelang::TFHE::BatchedNegGLWEOp,
mlir::concretelang::Concrete::BatchedNegateLweTensorOp>
>(&getContext(), converter);
// pattern of remaining TFHE ops
patterns.insert<ZeroOpPattern<mlir::concretelang::TFHE::ZeroGLWEOp>,
ZeroOpPattern<mlir::concretelang::TFHE::ZeroTensorGLWEOp>,
SubIntGLWEOpPattern, BootstrapGLWEOpPattern,
BatchedBootstrapGLWEOpPattern,
BatchedMappedBootstrapGLWEOpPattern, KeySwitchGLWEOpPattern,
BatchedKeySwitchGLWEOpPattern, WopPBSGLWEOpPattern>(
&getContext(), converter);
// Add patterns to rewrite tensor operators that works on tensors of TFHE GLWE
// types
patterns.insert<ExtractSliceOpPattern, ExtractOpPattern,
InsertSliceOpPattern<mlir::tensor::InsertSliceOp>,
InsertSliceOpPattern<mlir::tensor::ParallelInsertSliceOp>,
InsertOpPattern, FromElementsOpPattern>(&getContext(),
converter);
// Add patterns to rewrite some of tensor ops that were introduced by the
// linalg bufferization of encrypted tensor
insertTensorShapeOpPattern<mlir::tensor::ExpandShapeOp,
mlir::tensor::ExpandShapeOp::Adaptor,
mlir::TensorType, false>(getContext(), converter,
patterns, target);
insertTensorShapeOpPattern<mlir::tensor::CollapseShapeOp,
mlir::tensor::CollapseShapeOp::Adaptor,
mlir::TensorType, true>(getContext(), converter,
patterns, target);
// legalize ops only if operand and result types are legal
target.addDynamicallyLegalOp<
mlir::tensor::YieldOp, mlir::scf::YieldOp, mlir::tensor::GenerateOp,
mlir::tensor::ExtractSliceOp, mlir::tensor::ExtractOp,
mlir::tensor::InsertSliceOp, mlir::tensor::ParallelInsertSliceOp,
mlir::tensor::ExpandShapeOp, mlir::tensor::CollapseShapeOp,
mlir::tensor::EmptyOp, mlir::tensor::FromElementsOp, mlir::tensor::DimOp,
mlir::bufferization::AllocTensorOp>([&](mlir::Operation *op) {
return converter.isLegal(op->getResultTypes()) &&
converter.isLegal(op->getOperandTypes());
});
// rewrite scf for loops if working on illegal types
patterns.add<mlir::concretelang::TypeConvertingReinstantiationPattern<
mlir::scf::ForOp>,
mlir::concretelang::TypeConvertingReinstantiationPattern<
mlir::scf::ForallOp>,
mlir::concretelang::TypeConvertingReinstantiationPattern<
mlir::scf::InParallelOp>>(&getContext(), converter);
mlir::concretelang::addDynamicallyLegalTypeOp<mlir::func::ReturnOp>(
target, converter);
mlir::populateFunctionOpInterfaceTypeConversionPattern<mlir::func::FuncOp>(
patterns, converter);
// Conversion of Tracing dialect
patterns.add<mlir::concretelang::TypeConvertingReinstantiationPattern<
Tracing::TraceCiphertextOp, true>>(&getContext(), converter);
mlir::concretelang::addDynamicallyLegalTypeOp<Tracing::TraceCiphertextOp>(
target, converter);
patterns.add<TracePlaintextOpPattern>(&getContext(), converter);
target.addLegalOp<mlir::arith::ExtUIOp>();
target.addDynamicallyLegalOp<Tracing::TracePlaintextOp>(
[&](Tracing::TracePlaintextOp op) {
return (
op.getPlaintext().getType().cast<mlir::IntegerType>().getWidth() ==
64);
});
patterns.add<mlir::concretelang::TypeConvertingReinstantiationPattern<
mlir::func::ReturnOp>,
mlir::concretelang::TypeConvertingReinstantiationPattern<
mlir::scf::YieldOp>,
mlir::concretelang::TypeConvertingReinstantiationPattern<
mlir::bufferization::AllocTensorOp, true>,
mlir::concretelang::TypeConvertingReinstantiationPattern<
mlir::tensor::EmptyOp, true>,
mlir::concretelang::TypeConvertingReinstantiationPattern<
mlir::tensor::DimOp>>(&getContext(), converter);
mlir::concretelang::populateWithRTTypeConverterPatterns(patterns, target,
converter);
// Apply conversion
if (mlir::applyPartialConversion(op, target, std::move(patterns)).failed()) {
this->signalPassFailure();
}
}
} // namespace
namespace mlir {
namespace concretelang {
std::unique_ptr<OperationPass<ModuleOp>> createConvertTFHEToConcretePass() {
return std::make_unique<TFHEToConcretePass>();
}
} // namespace concretelang
} // namespace mlir