Files
concrete/old_files/new_scripts.py
2022-06-24 13:33:13 +01:00

472 lines
17 KiB
Python

from estimator_new import *
from sage.all import oo, save, load, ceil
from math import log2
import multiprocessing
def old_models(security_level, sd, logq=32):
"""
Use the old model as a starting point for the data gathering step
:param security_level: the security level under consideration
:param sd : the standard deviation of the LWE error distribution Xe
:param logq : the (base 2 log) value of the LWE modulus q
"""
def evaluate_model(a, b, stddev=sd):
return (stddev - b)/a
models = dict()
models["80"] = (-0.04049295502947623, 1.1288318226557081 + logq)
models["96"] = (-0.03416314056943681, 1.4704806061716345 + logq)
models["112"] = (-0.02970984362676178, 1.7848907787798667 + logq)
models["128"] = (-0.026361288425133814, 2.0014671315214696 + logq)
models["144"] = (-0.023744534465622812, 2.1710601038230712 + logq)
models["160"] = (-0.021667220727651954, 2.3565507936475476 + logq)
models["176"] = (-0.019947662046189942, 2.5109588704235803 + logq)
models["192"] = (-0.018552804646747204, 2.7168913723130816 + logq)
models["208"] = (-0.017291091126923574, 2.7956961446214326 + logq)
models["224"] = (-0.016257546811508806, 2.9582401000615226 + logq)
models["240"] = (-0.015329741032015766, 3.0744579055889782 + logq)
models["256"] = (-0.014530554319171845, 3.2094375376751745 + logq)
(a, b) = models["{}".format(security_level)]
n_est = evaluate_model(a, b, sd)
return round(n_est)
def estimate(params, red_cost_model=RC.BDGL16, skip=("arora-gb", "bkw")):
"""
Retrieve an estimate using the Lattice Estimator, for a given set of input parameters
:param params: the input LWE parameters
:param red_cost_model: the lattice reduction cost model
:param skip: attacks to skip
"""
est = LWE.estimate(params, red_cost_model=red_cost_model, deny_list=skip)
return est
def get_security_level(est, dp=2):
"""
Get the security level lambda from a Lattice Estimator output
:param est: the Lattice Estimator output
:param dp: the number of decimal places to consider
"""
attack_costs = []
# note: key does not need to be specified est vs est.keys()
for key in est:
attack_costs.append(est[key]["rop"])
# get the security level correct to 'dp' decimal places
security_level = round(log2(min(attack_costs)), dp)
return security_level
def inequality(x, y):
""" A utility function which compresses the conditions x < y and x > y into a single condition via a multiplier
:param x: the LHS of the inequality
:param y: the RHS of the inequality
"""
if x <= y:
return 1
if x > y:
return -1
def automated_param_select_n(params, target_security=128):
""" A function used to generate the smallest value of n which allows for
target_security bits of security, for the input values of (params.Xe.stddev,params.q)
:param params: the standard deviation of the error
:param target_security: the target number of bits of security, 128 is default
EXAMPLE:
sage: X = automated_param_select_n(Kyber512, target_security = 128)
sage: X
456
"""
# get an estimate based on the prev. model
print("n = {}".format(params.n))
n_start = old_models(target_security, log2(params.Xe.stddev), log2(params.q))
# n_start = max(n_start, 450)
# TODO: think about throwing an error if the required n < 450
params = params.updated(n=n_start)
costs2 = estimate(params)
security_level = get_security_level(costs2, 2)
z = inequality(security_level, target_security)
# we keep n > 2 * target_security as a rough baseline for mitm security (on binary key guessing)
while z * security_level < z * target_security:
# TODO: fill in this case! For n > 1024 we only need to consider every 256 (optimization)
params = params.updated(n = params.n + z * 8)
costs = estimate(params)
security_level = get_security_level(costs, 2)
if -1 * params.Xe.stddev > 0:
print("target security level is unattainable")
break
# final estimate (we went too far in the above loop)
if security_level < target_security:
# we make n larger
print("we make n larger")
params = params.updated(n=params.n + 8)
costs = estimate(params)
security_level = get_security_level(costs, 2)
print("the finalised parameters are n = {}, log2(sd) = {}, log2(q) = {}, with a security level of {}-bits".format(params.n,
log2(params.Xe.stddev),
log2(params.q),
security_level))
if security_level < target_security:
params.updated(n=None)
return params, security_level
def generate_parameter_matrix(params_in, sd_range, target_security_levels=[128], name="default_name"):
"""
:param params_in: a initial set of LWE parameters
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
:param target_security_levels: a list of the target number of bits of security, 128 is default
:param name: a name to save the file
"""
(sd_min, sd_max) = sd_range
for lam in target_security_levels:
for sd in range(sd_min, sd_max + 1):
print("run for {}".format(lam, sd))
Xe_new = nd.NoiseDistribution.DiscreteGaussian(2**sd)
(params_out, sec) = automated_param_select_n(params_in.updated(Xe=Xe_new), target_security=lam)
try:
results = load("{}.sobj".format(name))
except:
results = dict()
results["{}".format(lam)] = []
results["{}".format(lam)].append((params_out.n, log2(params_out.q), log2(params_out.Xe.stddev), sec))
save(results, "{}.sobj".format(name))
return results
def generate_zama_curves64(sd_range=[2, 58], target_security_levels=[128], name="default_name"):
"""
The top level function which we use to run the experiment
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
:param target_security_levels: a list of the target number of bits of security, 128 is default
:param name: a name to save the file
"""
if __name__ == '__main__':
D = ND.DiscreteGaussian
vals = range(sd_range[0], sd_range[1])
pool = multiprocessing.Pool(2)
init_params = LWE.Parameters(n=1024, q=2 ** 64, Xs=D(0.50, -0.50), Xe=D(2 ** 55), m=oo, tag='params')
inputs = [(init_params, (val, val), target_security_levels, name) for val in vals]
res = pool.starmap(generate_parameter_matrix, inputs)
return "done"
# The script runs the following commands
import sys
# grab values of the command-line input arguments
a = int(sys.argv[1])
b = int(sys.argv[2])
c = int(sys.argv[3])
# run the code
generate_zama_curves64(sd_range= (b,c), target_security_levels=[a], name="{}".format(a))
from estimator_new import *
from sage.all import oo, save, load
from math import log2
import multiprocessing
def old_models(security_level, sd, logq=32):
"""
Use the old model as a starting point for the data gathering step
:param security_level: the security level under consideration
:param sd : the standard deviation of the LWE error distribution Xe
:param logq : the (base 2 log) value of the LWE modulus q
"""
def evaluate_model(a, b, stddev=sd):
return (stddev - b)/a
models = dict()
models["80"] = (-0.04049295502947623, 1.1288318226557081 + logq)
models["96"] = (-0.03416314056943681, 1.4704806061716345 + logq)
models["112"] = (-0.02970984362676178, 1.7848907787798667 + logq)
models["128"] = (-0.026361288425133814, 2.0014671315214696 + logq)
models["144"] = (-0.023744534465622812, 2.1710601038230712 + logq)
models["160"] = (-0.021667220727651954, 2.3565507936475476 + logq)
models["176"] = (-0.019947662046189942, 2.5109588704235803 + logq)
models["192"] = (-0.018552804646747204, 2.7168913723130816 + logq)
models["208"] = (-0.017291091126923574, 2.7956961446214326 + logq)
models["224"] = (-0.016257546811508806, 2.9582401000615226 + logq)
models["240"] = (-0.015329741032015766, 3.0744579055889782 + logq)
models["256"] = (-0.014530554319171845, 3.2094375376751745 + logq)
(a, b) = models["{}".format(security_level)]
n_est = evaluate_model(a, b, sd)
return round(n_est)
def estimate(params, red_cost_model=RC.BDGL16, skip=("arora-gb", "bkw")):
"""
Retrieve an estimate using the Lattice Estimator, for a given set of input parameters
:param params: the input LWE parameters
:param red_cost_model: the lattice reduction cost model
:param skip: attacks to skip
"""
est = LWE.estimate(params, red_cost_model=red_cost_model, deny_list=skip)
return est
def get_security_level(est, dp=2):
"""
Get the security level lambda from a Lattice Estimator output
:param est: the Lattice Estimator output
:param dp: the number of decimal places to consider
"""
attack_costs = []
# note: key does not need to be specified est vs est.keys()
for key in est:
attack_costs.append(est[key]["rop"])
# get the security level correct to 'dp' decimal places
security_level = round(log2(min(attack_costs)), dp)
return security_level
def inequality(x, y):
""" A utility function which compresses the conditions x < y and x > y into a single condition via a multiplier
:param x: the LHS of the inequality
:param y: the RHS of the inequality
"""
if x <= y:
return 1
if x > y:
return -1
def automated_param_select_n(params, target_security=128):
""" A function used to generate the smallest value of n which allows for
target_security bits of security, for the input values of (params.Xe.stddev,params.q)
:param params: the standard deviation of the error
:param target_security: the target number of bits of security, 128 is default
EXAMPLE:
sage: X = automated_param_select_n(Kyber512, target_security = 128)
sage: X
456
"""
# get an estimate based on the prev. model
print("n = {}".format(params.n))
n_start = old_models(target_security, log2(params.Xe.stddev), log2(params.q))
# n_start = max(n_start, 450)
# TODO: think about throwing an error if the required n < 450
params = params.updated(n=n_start)
costs2 = estimate(params)
security_level = get_security_level(costs2, 2)
z = inequality(security_level, target_security)
# we keep n > 2 * target_security as a rough baseline for mitm security (on binary key guessing)
while z * security_level < z * target_security:
# TODO: fill in this case! For n > 1024 we only need to consider every 256 (optimization)
params = params.updated(n = params.n + z * 8)
costs = estimate(params)
security_level = get_security_level(costs, 2)
if -1 * params.Xe.stddev > 0:
print("target security level is unattainable")
break
# final estimate (we went too far in the above loop)
if security_level < target_security:
# we make n larger
print("we make n larger")
params = params.updated(n=params.n + 8)
costs = estimate(params)
security_level = get_security_level(costs, 2)
print("the finalised parameters are n = {}, log2(sd) = {}, log2(q) = {}, with a security level of {}-bits".format(params.n,
log2(params.Xe.stddev),
log2(params.q),
security_level))
if security_level < target_security:
params.updated(n=None)
return params, security_level
def generate_parameter_matrix(params_in, sd_range, target_security_levels=[128], name="default_name"):
"""
:param params_in: a initial set of LWE parameters
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
:param target_security_levels: a list of the target number of bits of security, 128 is default
:param name: a name to save the file
"""
(sd_min, sd_max) = sd_range
for lam in target_security_levels:
for sd in range(sd_min, sd_max + 1):
print("run for {}".format(lam, sd))
Xe_new = nd.NoiseDistribution.DiscreteGaussian(2**sd)
(params_out, sec) = automated_param_select_n(params_in.updated(Xe=Xe_new), target_security=lam)
try:
results = load("{}.sobj".format(name))
except:
results = dict()
results["{}".format(lam)] = []
results["{}".format(lam)].append((params_out.n, log2(params_out.q), log2(params_out.Xe.stddev), sec))
save(results, "{}.sobj".format(name))
return results
def generate_zama_curves64(sd_range=[2, 58], target_security_levels=[128], name="default_name"):
"""
The top level function which we use to run the experiment
:param sd_range: a tuple (sd_min, sd_max) giving the values of sd for which to generate parameters
:param target_security_levels: a list of the target number of bits of security, 128 is default
:param name: a name to save the file
"""
if __name__ == '__main__':
D = ND.DiscreteGaussian
vals = range(sd_range[0], sd_range[1])
pool = multiprocessing.Pool(2)
init_params = LWE.Parameters(n=1024, q=2 ** 64, Xs=D(0.50, -0.50), Xe=D(2 ** 55), m=oo, tag='params')
inputs = [(init_params, (val, val), target_security_levels, name) for val in vals]
res = pool.starmap(generate_parameter_matrix, inputs)
return "done"
# The script runs the following commands
import sys
# grab values of the command-line input arguments
a = int(sys.argv[1])
b = int(sys.argv[2])
c = int(sys.argv[3])
# run the code
generate_zama_curves64(sd_range= (b,c), target_security_levels=[a], name="{}".format(a))
import numpy as np
from sage.all import save, load
def sort_data(security_level):
from operator import itemgetter
# step 1. load the data
X = load("{}.sobj".format(security_level))
# step 2. sort by SD
x = sorted(X["{}".format(security_level)], key = itemgetter(2))
# step3. replace the sorted value
X["{}".format(security_level)] = x
return X
def generate_curve(security_level):
# step 1. get the data
X = sort_data(security_level)
# step 2. group the n and sigma data into lists
N = []
SD = []
for x in X["{}".format(security_level)]:
N.append(x[0])
SD.append(x[2] + 0.5)
# step 3. perform interpolation and return coefficients
(a,b) = np.polyfit(N, SD, 1)
return a, b
def verify_curve(security_level, a = None, b = None):
# step 1. get the table and max values of n, sd
X = sort_data(security_level)
n_max = X["{}".format(security_level)][0][0]
sd_max = X["{}".format(security_level)][-1][2]
# step 2. a function to get model values
def f_model(a, b, n):
return ceil(a * n + b)
# step 3. a function to get table values
def f_table(table, n):
for i in range(len(table)):
n_val = table[i][0]
if n < n_val:
pass
else:
j = i
break
# now j is the correct index, we return the corresponding sd
return table[j][2]
# step 3. for each n, check whether we satisfy the table
n_min = max(2 * security_level, 450, X["{}".format(security_level)][-1][0])
print(n_min)
print(n_max)
for n in range(n_max, n_min, - 1):
model_sd = f_model(a, b, n)
table_sd = f_table(X["{}".format(security_level)], n)
print(n , table_sd, model_sd, model_sd >= table_sd)
if table_sd > model_sd:
print("MODEL FAILS at n = {}".format(n))
return "FAIL"
return "PASS", n_min
def generate_and_verify(security_levels, log_q, name = "verified_curves"):
data = []
for sec in security_levels:
print("WE GO FOR {}".format(sec))
# generate the model for security level sec
(a_sec, b_sec) = generate_curve(sec)
# verify the model for security level sec
res = verify_curve(sec, a_sec, b_sec)
# append the information into a list
data.append((a_sec, b_sec - log_q, sec, res[0], res[1]))
save(data, "{}.sobj".format(name))
return data
# To verify the curves we use
generate_and_verify([80, 96, 112, 128, 144, 160, 176, 192, 256], log_q = 64)