mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-19 08:54:26 -05:00
This commit rebases the compiler onto commit 465ee9bfb26d from
llvm-project with locally maintained patches on top, i.e.:
* 5d8669d669ee: Fix the element alignment (size) for memrefCopy
* 4239163ea337: fix: Do not fold the memref.subview if the offset are
!= 0 and strides != 1
* 72c5decfcc21: remove github stuff from llvm
* 8d0ce8f9eca1: Support arbitrary element types in named operations
via attributes
* 94f64805c38c: Copy attributes of scf.for on bufferization and make
it an allocation hoisting barrier
Main upstream changes from llvm-project that required modification of
concretecompiler:
* Switch to C++17
* Various changes in the interfaces for linalg named operations
* Transition from `llvm::Optional` to `std::optional`
* Use of enums instead of string values for iterator types in linalg
* Changed default naming convention of getter methods in
ODS-generated operation classes from `some_value()` to
`getSomeValue()`
* Renaming of Arithmetic dialect to Arith
* Refactoring of side effect interfaces (i.e., renaming from
`NoSideEffect` to `Pure`)
* Re-design of the data flow analysis framework
* Refactoring of build targets for Python bindings
* Refactoring of array attributes with integer values
* Renaming of `linalg.init_tensor` to `tensor.empty`
* Emission of `linalg.map` operations in bufferization of the Tensor
dialect requiring another linalg conversion pass and registration
of the bufferization op interfaces for linalg operations
* Refactoring of the one-shot bufferizer
* Necessity to run the expand-strided-metadata, affine-to-std and
finalize-memref-to-llvm passes before converson to the LLVM
dialect
* Renaming of `BlockAndValueMapping` to `IRMapping`
* Changes in the build function of `LLVM::CallOp`
* Refactoring of the construction of `llvm::ArrayRef` and
`llvm::MutableArrayRef` (direct invocation of constructor instead
of builder functions for some cases)
* New naming conventions for generated SSA values requiring rewrite
of some check tests
* Refactoring of `mlir::LLVM::lookupOrCreateMallocFn()`
* Interface changes in generated type parsers
* New dependencies for to mlir_float16_utils and
MLIRSparseTensorRuntime for the runtime
* Overhaul of MLIR-c deleting `mlir-c/Registration.h`
* Deletion of library MLIRLinalgToSPIRV
* Deletion of library MLIRLinalgAnalysis
* Deletion of library MLIRMemRefUtils
* Deletion of library MLIRQuantTransforms
* Deletion of library MLIRVectorToROCDL
147 lines
5.5 KiB
C++
147 lines
5.5 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
|
|
#include "concretelang/Dialect/Concrete/IR/ConcreteDialect.h"
|
|
#include "concretelang/Dialect/Concrete/IR/ConcreteOps.h"
|
|
#include "concretelang/Dialect/Concrete/Transforms/Passes.h"
|
|
|
|
namespace {
|
|
struct AddRuntimeContextToFuncOpPattern
|
|
: public mlir::OpRewritePattern<mlir::func::FuncOp> {
|
|
AddRuntimeContextToFuncOpPattern(mlir::MLIRContext *context,
|
|
mlir::PatternBenefit benefit = 1)
|
|
: mlir::OpRewritePattern<mlir::func::FuncOp>(context, benefit) {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(mlir::func::FuncOp oldFuncOp,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
mlir::OpBuilder::InsertionGuard guard(rewriter);
|
|
mlir::FunctionType oldFuncType = oldFuncOp.getFunctionType();
|
|
|
|
// Add a Concrete.context to the function signature
|
|
mlir::SmallVector<mlir::Type> newInputs(oldFuncType.getInputs().begin(),
|
|
oldFuncType.getInputs().end());
|
|
newInputs.push_back(
|
|
rewriter.getType<mlir::concretelang::Concrete::ContextType>());
|
|
mlir::FunctionType newFuncTy = rewriter.getType<mlir::FunctionType>(
|
|
newInputs, oldFuncType.getResults());
|
|
|
|
rewriter.updateRootInPlace(oldFuncOp,
|
|
[&] { oldFuncOp.setType(newFuncTy); });
|
|
oldFuncOp.getBody().front().addArgument(
|
|
rewriter.getType<mlir::concretelang::Concrete::ContextType>(),
|
|
oldFuncOp.getLoc());
|
|
|
|
return mlir::success();
|
|
}
|
|
|
|
/// Legal function are one that are private or has a Concrete.context as last
|
|
/// arguments.
|
|
static bool isLegal(mlir::func::FuncOp funcOp) {
|
|
if (!funcOp.isPublic()) {
|
|
return true;
|
|
}
|
|
|
|
return funcOp.getFunctionType().getNumInputs() >= 1 &&
|
|
funcOp.getFunctionType()
|
|
.getInputs()
|
|
.back()
|
|
.isa<mlir::concretelang::Concrete::ContextType>();
|
|
}
|
|
};
|
|
|
|
namespace {
|
|
struct FunctionConstantOpConversion
|
|
: public mlir::OpRewritePattern<mlir::func::ConstantOp> {
|
|
FunctionConstantOpConversion(mlir::MLIRContext *ctx,
|
|
mlir::PatternBenefit benefit = 1)
|
|
: ::mlir::OpRewritePattern<mlir::func::ConstantOp>(ctx, benefit) {}
|
|
::mlir::LogicalResult
|
|
matchAndRewrite(mlir::func::ConstantOp op,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
auto symTab = mlir::SymbolTable::getNearestSymbolTable(op);
|
|
auto funcOp = mlir::SymbolTable::lookupSymbolIn(symTab, op.getValue());
|
|
assert(funcOp &&
|
|
"Function symbol missing in symbol table for function constant op.");
|
|
mlir::FunctionType funType = mlir::cast<mlir::func::FuncOp>(funcOp)
|
|
.getFunctionType()
|
|
.cast<mlir::FunctionType>();
|
|
mlir::SmallVector<mlir::Type> newInputs(funType.getInputs().begin(),
|
|
funType.getInputs().end());
|
|
newInputs.push_back(
|
|
rewriter.getType<mlir::concretelang::Concrete::ContextType>());
|
|
mlir::FunctionType newFuncTy =
|
|
rewriter.getType<mlir::FunctionType>(newInputs, funType.getResults());
|
|
|
|
rewriter.updateRootInPlace(op, [&] { op.getResult().setType(newFuncTy); });
|
|
return mlir::success();
|
|
}
|
|
static bool isLegal(mlir::func::ConstantOp fun) {
|
|
auto symTab = mlir::SymbolTable::getNearestSymbolTable(fun);
|
|
auto funcOp = mlir::SymbolTable::lookupSymbolIn(symTab, fun.getValue());
|
|
assert(funcOp &&
|
|
"Function symbol missing in symbol table for function constant op.");
|
|
mlir::FunctionType funType = mlir::cast<mlir::func::FuncOp>(funcOp)
|
|
.getFunctionType()
|
|
.cast<mlir::FunctionType>();
|
|
if ((AddRuntimeContextToFuncOpPattern::isLegal(
|
|
mlir::cast<mlir::func::FuncOp>(funcOp)) &&
|
|
fun.getType() == funType) ||
|
|
fun.getType() != funType)
|
|
return true;
|
|
return false;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
struct AddRuntimeContextPass
|
|
: public AddRuntimeContextBase<AddRuntimeContextPass> {
|
|
void runOnOperation() final;
|
|
};
|
|
|
|
void AddRuntimeContextPass::runOnOperation() {
|
|
mlir::ModuleOp op = getOperation();
|
|
|
|
// First of all add the Concrete.context to the block arguments of function
|
|
// that manipulates ciphertexts.
|
|
{
|
|
mlir::ConversionTarget target(getContext());
|
|
mlir::RewritePatternSet patterns(&getContext());
|
|
|
|
target.addDynamicallyLegalOp<mlir::func::FuncOp>(
|
|
[&](mlir::func::FuncOp funcOp) {
|
|
return AddRuntimeContextToFuncOpPattern::isLegal(funcOp);
|
|
});
|
|
target.addDynamicallyLegalOp<mlir::func::ConstantOp>(
|
|
[&](mlir::func::ConstantOp op) {
|
|
return FunctionConstantOpConversion::isLegal(op);
|
|
});
|
|
|
|
patterns.add<AddRuntimeContextToFuncOpPattern>(patterns.getContext());
|
|
patterns.add<FunctionConstantOpConversion>(patterns.getContext());
|
|
|
|
// Apply the conversion
|
|
if (mlir::applyPartialConversion(op, target, std::move(patterns))
|
|
.failed()) {
|
|
this->signalPassFailure();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
namespace mlir {
|
|
namespace concretelang {
|
|
std::unique_ptr<OperationPass<ModuleOp>> createAddRuntimeContext() {
|
|
return std::make_unique<AddRuntimeContextPass>();
|
|
}
|
|
} // namespace concretelang
|
|
} // namespace mlir
|