mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-08 19:44:57 -05:00
226 lines
8.7 KiB
Python
226 lines
8.7 KiB
Python
import pytest
|
|
import shutil
|
|
import numpy as np
|
|
from concrete.compiler import (
|
|
LibrarySupport,
|
|
PublicArguments,
|
|
SimulatedValueExporter,
|
|
SimulatedValueDecrypter,
|
|
CompilationOptions,
|
|
)
|
|
|
|
|
|
def assert_result(result, expected_result):
|
|
"""Assert that result and expected result are equal.
|
|
|
|
result and expected_result can be integers on numpy arrays.
|
|
"""
|
|
assert type(expected_result) == type(result)
|
|
if isinstance(expected_result, int):
|
|
assert result == expected_result
|
|
else:
|
|
assert np.all(result == expected_result)
|
|
|
|
|
|
def run_simulated(engine, args_and_shape, compilation_result):
|
|
client_parameters = engine.load_client_parameters(compilation_result)
|
|
sim_value_exporter = SimulatedValueExporter.new(client_parameters)
|
|
values = []
|
|
pos = 0
|
|
for arg, shape in args_and_shape:
|
|
if shape is None:
|
|
assert isinstance(arg, int)
|
|
values.append(sim_value_exporter.export_scalar(pos, arg))
|
|
else:
|
|
assert isinstance(arg, list)
|
|
assert isinstance(shape, list)
|
|
values.append(sim_value_exporter.export_tensor(pos, arg, shape))
|
|
pos += 1
|
|
public_arguments = PublicArguments.new(client_parameters, values)
|
|
server_lambda = engine.load_server_lambda(compilation_result)
|
|
public_result = engine.simulate(server_lambda, public_arguments)
|
|
sim_value_decrypter = SimulatedValueDecrypter.new(client_parameters)
|
|
result = sim_value_decrypter.decrypt(0, public_result.get_value(0))
|
|
return result
|
|
|
|
|
|
def compile_run_assert(
|
|
engine,
|
|
mlir_input,
|
|
args_and_shape,
|
|
expected_result,
|
|
options=CompilationOptions.new("main"),
|
|
):
|
|
# compile with simulation
|
|
options.simulation(True)
|
|
compilation_result = engine.compile(mlir_input, options)
|
|
result = run_simulated(engine, args_and_shape, compilation_result)
|
|
assert_result(result, expected_result)
|
|
|
|
|
|
end_to_end_fixture = [
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%arg0: !FHE.eint<7>, %arg1: i8) -> !FHE.eint<7> {
|
|
%1 = "FHE.add_eint_int"(%arg0, %arg1): (!FHE.eint<7>, i8) -> (!FHE.eint<7>)
|
|
return %1: !FHE.eint<7>
|
|
}
|
|
""",
|
|
(5, 7),
|
|
12,
|
|
id="add_eint_int",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%arg0: !FHE.eint<7>) -> !FHE.eint<7> {
|
|
%tlu = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]> : tensor<128xi64>
|
|
%1 = "FHE.apply_lookup_table"(%arg0, %tlu): (!FHE.eint<7>, tensor<128xi64>) -> (!FHE.eint<7>)
|
|
return %1: !FHE.eint<7>
|
|
}
|
|
""",
|
|
(73,),
|
|
73,
|
|
id="apply_lookup_table",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%arg0: tensor<4x!FHE.eint<7>>, %arg1: tensor<4xi8>) -> !FHE.eint<7>
|
|
{
|
|
%ret = "FHELinalg.dot_eint_int"(%arg0, %arg1) :
|
|
(tensor<4x!FHE.eint<7>>, tensor<4xi8>) -> !FHE.eint<7>
|
|
return %ret : !FHE.eint<7>
|
|
}
|
|
""",
|
|
(
|
|
np.array([1, 2, 3, 4], dtype=np.uint8),
|
|
np.array([4, 3, 2, 1], dtype=np.uint8),
|
|
),
|
|
20,
|
|
id="dot_eint_int_uint8",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%a0: tensor<4x!FHE.eint<6>>, %a1: tensor<4xi7>) -> tensor<4x!FHE.eint<6>> {
|
|
%res = "FHELinalg.add_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<6>>, tensor<4xi7>) -> tensor<4x!FHE.eint<6>>
|
|
return %res : tensor<4x!FHE.eint<6>>
|
|
}
|
|
""",
|
|
(
|
|
np.array([31, 6, 12, 9], dtype=np.uint8),
|
|
np.array([32, 9, 2, 3], dtype=np.uint8),
|
|
),
|
|
np.array([63, 15, 14, 12]),
|
|
id="add_eint_int_1D",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%arg0: !FHE.esint<7>) -> !FHE.esint<7> {
|
|
%0 = "FHE.neg_eint"(%arg0): (!FHE.esint<7>) -> !FHE.esint<7>
|
|
return %0: !FHE.esint<7>
|
|
}
|
|
""",
|
|
(5,),
|
|
-5,
|
|
id="neg_eint_signed",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%arg0: tensor<2x!FHE.esint<7>>) -> tensor<2x!FHE.esint<7>> {
|
|
%0 = "FHELinalg.neg_eint"(%arg0): (tensor<2x!FHE.esint<7>>) -> tensor<2x!FHE.esint<7>>
|
|
return %0: tensor<2x!FHE.esint<7>>
|
|
}
|
|
""",
|
|
(np.array([-5, 3]),),
|
|
np.array([5, -3]),
|
|
id="neg_eint_signed_2",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%arg0: tensor<4x4x!FHE.eint<13>>, %arg1: tensor<4x4xi14>) -> tensor<4x4x!FHE.eint<13>> {
|
|
%0 = "FHELinalg.matmul_eint_int"(%arg0, %arg1) : (tensor<4x4x!FHE.eint<13>>, tensor<4x4xi14>) -> tensor<4x4x!FHE.eint<13>>
|
|
%1 = "FHELinalg.matmul_eint_int"(%0, %arg1) : (tensor<4x4x!FHE.eint<13>>, tensor<4x4xi14>) -> tensor<4x4x!FHE.eint<13>>
|
|
%2 = "FHELinalg.matmul_eint_int"(%1, %arg1) : (tensor<4x4x!FHE.eint<13>>, tensor<4x4xi14>) -> tensor<4x4x!FHE.eint<13>>
|
|
%3 = "FHELinalg.matmul_eint_int"(%2, %arg1) : (tensor<4x4x!FHE.eint<13>>, tensor<4x4xi14>) -> tensor<4x4x!FHE.eint<13>>
|
|
return %3 : tensor<4x4x!FHE.eint<13>>
|
|
}
|
|
""",
|
|
(
|
|
np.array([i // 4 for i in range(16)]).reshape((4, 4)),
|
|
np.array([i // 4 for i in range(15, -1, -1)]).reshape((4, 4)),
|
|
),
|
|
np.array(
|
|
[
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
1296,
|
|
1296,
|
|
1296,
|
|
1296,
|
|
2592,
|
|
2592,
|
|
2592,
|
|
2592,
|
|
3888,
|
|
3888,
|
|
3888,
|
|
3888,
|
|
]
|
|
).reshape((4, 4)),
|
|
id="matul_chain_with_crt",
|
|
),
|
|
]
|
|
|
|
end_to_end_parallel_fixture = [
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%x: tensor<3x4x!FHE.eint<7>>, %y: tensor<3x4x!FHE.eint<7>>) -> tensor<3x2x!FHE.eint<7>> {
|
|
%c = arith.constant dense<[[1, 2], [3, 4], [5, 0], [1, 2]]> : tensor<4x2xi8>
|
|
%0 = "FHELinalg.matmul_eint_int"(%x, %c): (tensor<3x4x!FHE.eint<7>>, tensor<4x2xi8>) -> tensor<3x2x!FHE.eint<7>>
|
|
%1 = "FHELinalg.matmul_eint_int"(%y, %c): (tensor<3x4x!FHE.eint<7>>, tensor<4x2xi8>) -> tensor<3x2x!FHE.eint<7>>
|
|
%2 = "FHELinalg.add_eint"(%0, %1): (tensor<3x2x!FHE.eint<7>>, tensor<3x2x!FHE.eint<7>>) -> tensor<3x2x!FHE.eint<7>>
|
|
return %2 : tensor<3x2x!FHE.eint<7>>
|
|
}
|
|
""",
|
|
(
|
|
np.array([[1, 2, 3, 4], [4, 2, 1, 0], [2, 3, 1, 5]], dtype=np.uint8),
|
|
np.array([[1, 2, 3, 4], [4, 2, 1, 1], [2, 3, 1, 5]], dtype=np.uint8),
|
|
),
|
|
np.array([[52, 36], [31, 34], [42, 52]]),
|
|
id="matmul_eint_int_uint8",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
func.func @main(%a0: tensor<4x!FHE.eint<6>>, %a1: tensor<4xi7>, %a2: tensor<4x!FHE.eint<6>>, %a3: tensor<4xi7>) -> tensor<4x!FHE.eint<6>> {
|
|
%1 = "FHELinalg.add_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<6>>, tensor<4xi7>) -> tensor<4x!FHE.eint<6>>
|
|
%2 = "FHELinalg.add_eint_int"(%a2, %a3) : (tensor<4x!FHE.eint<6>>, tensor<4xi7>) -> tensor<4x!FHE.eint<6>>
|
|
%res = "FHELinalg.add_eint"(%1, %2) : (tensor<4x!FHE.eint<6>>, tensor<4x!FHE.eint<6>>) -> tensor<4x!FHE.eint<6>>
|
|
return %res : tensor<4x!FHE.eint<6>>
|
|
}
|
|
""",
|
|
(
|
|
np.array([1, 2, 3, 4], dtype=np.uint8),
|
|
np.array([9, 8, 6, 5], dtype=np.uint8),
|
|
np.array([3, 2, 7, 0], dtype=np.uint8),
|
|
np.array([1, 4, 2, 11], dtype=np.uint8),
|
|
),
|
|
np.array([14, 16, 18, 20]),
|
|
id="add_eint_int_1D",
|
|
),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("mlir_input, args, expected_result", end_to_end_fixture)
|
|
def test_lib_compile_and_run_simulation(mlir_input, args, expected_result):
|
|
artifact_dir = "./py_test_lib_compile_and_run"
|
|
engine = LibrarySupport.new(artifact_dir)
|
|
args_and_shape = []
|
|
for arg in args:
|
|
if isinstance(arg, int):
|
|
args_and_shape.append((arg, None))
|
|
else: # np.array
|
|
args_and_shape.append((arg.flatten().tolist(), list(arg.shape)))
|
|
compile_run_assert(engine, mlir_input, args_and_shape, expected_result)
|
|
shutil.rmtree(artifact_dir)
|