Files
concrete/compilers/concrete-compiler/compiler/lib/Bindings/Python/CompilerAPIModule.cpp
Alexandre Péré d1b62462f2 fix(compiler): fix mac arm exception propagation
On Mac arm, the c api backing the python bindings does not propagate the
exceptions properly to the concretelang python module. This makes all
exceptions raised through `CompilerEngine.cpp` fall in the catch-all
case of the pybind exceptions handler.

Since there is no particular need for a public c api, we just remove it
from the bindings, and move all the content of `CompilerEngine.cpp`
directly in the `CompilerAPIModule.cpp` file.
2024-02-14 15:08:19 +01:00

1454 lines
61 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include "concretelang/Bindings/Python/CompilerAPIModule.h"
#include "concrete-protocol.capnp.h"
#include "concretelang/ClientLib/ClientLib.h"
#include "concretelang/Common/Compat.h"
#include "concretelang/Common/Csprng.h"
#include "concretelang/Common/Keysets.h"
#include "concretelang/Dialect/FHE/IR/FHEOpsDialect.h.inc"
#include "concretelang/Runtime/DFRuntime.hpp"
#include "concretelang/Support/logging.h"
#include <llvm/Support/Debug.h>
#include <mlir-c/Bindings/Python/Interop.h>
#include <mlir/CAPI/IR.h>
#include <mlir/Dialect/Func/IR/FuncOps.h>
#include <mlir/Dialect/MemRef/IR/MemRef.h>
#include <mlir/ExecutionEngine/OptUtils.h>
#include <pybind11/pybind11.h>
#include <pybind11/pytypes.h>
#include <pybind11/stl.h>
#include <signal.h>
#include <stdexcept>
#include <string>
using mlir::concretelang::CompilationOptions;
using mlir::concretelang::LambdaArgument;
class SignalGuard {
public:
SignalGuard() { previousHandler = signal(SIGINT, SignalGuard::handler); }
~SignalGuard() { signal(SIGINT, this->previousHandler); }
private:
void (*previousHandler)(int);
static void handler(int _signum) {
llvm::outs() << " Aborting... \n";
kill(getpid(), SIGKILL);
}
};
/// Wrapper of the mlir::concretelang::LambdaArgument
struct lambdaArgument {
std::shared_ptr<mlir::concretelang::LambdaArgument> ptr;
};
typedef struct lambdaArgument lambdaArgument;
/// Hold a list of lambdaArgument to represent execution arguments
struct executionArguments {
lambdaArgument *data;
size_t size;
};
typedef struct executionArguments executionArguments;
// Library Support bindings ///////////////////////////////////////////////////
struct LibrarySupport_Py {
mlir::concretelang::LibrarySupport support;
};
typedef struct LibrarySupport_Py LibrarySupport_Py;
LibrarySupport_Py
library_support(const char *outputPath, const char *runtimeLibraryPath,
bool generateSharedLib, bool generateStaticLib,
bool generateClientParameters, bool generateCompilationFeedback,
bool generateCppHeader) {
return LibrarySupport_Py{mlir::concretelang::LibrarySupport(
outputPath, runtimeLibraryPath, generateSharedLib, generateStaticLib,
generateClientParameters, generateCompilationFeedback)};
}
std::unique_ptr<mlir::concretelang::LibraryCompilationResult>
library_compile(LibrarySupport_Py support, const char *module,
mlir::concretelang::CompilationOptions options) {
llvm::SourceMgr sm;
sm.AddNewSourceBuffer(llvm::MemoryBuffer::getMemBuffer(module),
llvm::SMLoc());
GET_OR_THROW_LLVM_EXPECTED(compilationResult,
support.support.compile(sm, options));
return std::move(*compilationResult);
}
std::unique_ptr<mlir::concretelang::LibraryCompilationResult>
library_compile_module(
LibrarySupport_Py support, mlir::ModuleOp module,
mlir::concretelang::CompilationOptions options,
std::shared_ptr<mlir::concretelang::CompilationContext> cctx) {
GET_OR_THROW_LLVM_EXPECTED(compilationResult,
support.support.compile(module, cctx, options));
return std::move(*compilationResult);
}
concretelang::clientlib::ClientParameters library_load_client_parameters(
LibrarySupport_Py support,
mlir::concretelang::LibraryCompilationResult &result) {
GET_OR_THROW_LLVM_EXPECTED(clientParameters,
support.support.loadClientParameters(result));
return *clientParameters;
}
mlir::concretelang::CompilationFeedback library_load_compilation_feedback(
LibrarySupport_Py support,
mlir::concretelang::LibraryCompilationResult &result) {
GET_OR_THROW_LLVM_EXPECTED(compilationFeedback,
support.support.loadCompilationFeedback(result));
return *compilationFeedback;
}
concretelang::serverlib::ServerLambda
library_load_server_lambda(LibrarySupport_Py support,
mlir::concretelang::LibraryCompilationResult &result,
bool useSimulation) {
GET_OR_THROW_LLVM_EXPECTED(
serverLambda, support.support.loadServerLambda(result, useSimulation));
return *serverLambda;
}
std::unique_ptr<concretelang::clientlib::PublicResult>
library_server_call(LibrarySupport_Py support,
concretelang::serverlib::ServerLambda lambda,
concretelang::clientlib::PublicArguments &args,
concretelang::clientlib::EvaluationKeys &evaluationKeys) {
GET_OR_THROW_LLVM_EXPECTED(
publicResult, support.support.serverCall(lambda, args, evaluationKeys));
return std::move(*publicResult);
}
std::unique_ptr<concretelang::clientlib::PublicResult>
library_simulate(LibrarySupport_Py support,
concretelang::serverlib::ServerLambda lambda,
concretelang::clientlib::PublicArguments &args) {
GET_OR_THROW_LLVM_EXPECTED(publicResult,
support.support.simulate(lambda, args));
return std::move(*publicResult);
}
std::string library_get_shared_lib_path(LibrarySupport_Py support) {
return support.support.getSharedLibPath();
}
std::string library_get_program_info_path(LibrarySupport_Py support) {
return support.support.getProgramInfoPath();
}
// Client Support bindings ///////////////////////////////////////////////////
std::unique_ptr<concretelang::clientlib::KeySet>
key_set(concretelang::clientlib::ClientParameters clientParameters,
std::optional<concretelang::clientlib::KeySetCache> cache,
uint64_t secretSeedMsb, uint64_t secretSeedLsb, uint64_t encSeedMsb,
uint64_t encSeedLsb) {
auto secretSeed = (((__uint128_t)secretSeedMsb) << 64) | secretSeedLsb;
auto encryptionSeed = (((__uint128_t)encSeedMsb) << 64) | encSeedLsb;
if (cache.has_value()) {
GET_OR_THROW_RESULT(Keyset keyset,
(*cache).keysetCache.getKeyset(
clientParameters.programInfo.asReader().getKeyset(),
secretSeed, encryptionSeed));
concretelang::clientlib::KeySet output{keyset};
return std::make_unique<concretelang::clientlib::KeySet>(std::move(output));
} else {
concretelang::csprng::SecretCSPRNG secCsprng(secretSeed);
concretelang::csprng::EncryptionCSPRNG encCsprng(encryptionSeed);
auto keyset = Keyset(clientParameters.programInfo.asReader().getKeyset(),
secCsprng, encCsprng);
concretelang::clientlib::KeySet output{keyset};
return std::make_unique<concretelang::clientlib::KeySet>(std::move(output));
}
}
std::unique_ptr<concretelang::clientlib::PublicArguments>
encrypt_arguments(concretelang::clientlib::ClientParameters clientParameters,
concretelang::clientlib::KeySet &keySet,
llvm::ArrayRef<mlir::concretelang::LambdaArgument *> args) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(), keySet.keyset.client,
std::make_shared<::concretelang::csprng::EncryptionCSPRNG>(
::concretelang::csprng::EncryptionCSPRNG(0)),
false);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto circuit = maybeProgram.value()
.getClientCircuit(clientParameters.programInfo.asReader()
.getCircuits()[0]
.getName())
.value();
std::vector<TransportValue> output;
for (size_t i = 0; i < args.size(); i++) {
auto info =
clientParameters.programInfo.asReader().getCircuits()[0].getInputs()[i];
auto typeTransformer = getPythonTypeTransformer(info);
auto input = typeTransformer(args[i]->value);
auto maybePrepared = circuit.prepareInput(input, i);
if (maybePrepared.has_failure()) {
throw std::runtime_error(maybePrepared.as_failure().error().mesg);
}
output.push_back(maybePrepared.value());
}
concretelang::clientlib::PublicArguments publicArgs{output};
return std::make_unique<concretelang::clientlib::PublicArguments>(
std::move(publicArgs));
}
std::vector<lambdaArgument>
decrypt_result(concretelang::clientlib::ClientParameters clientParameters,
concretelang::clientlib::KeySet &keySet,
concretelang::clientlib::PublicResult &publicResult) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(), keySet.keyset.client,
std::make_shared<::concretelang::csprng::EncryptionCSPRNG>(
::concretelang::csprng::EncryptionCSPRNG(0)),
false);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto circuit = maybeProgram.value()
.getClientCircuit(clientParameters.programInfo.asReader()
.getCircuits()[0]
.getName())
.value();
std::vector<lambdaArgument> results;
for (auto e : llvm::enumerate(publicResult.values)) {
auto maybeProcessed = circuit.processOutput(e.value(), e.index());
if (maybeProcessed.has_failure()) {
throw std::runtime_error(maybeProcessed.as_failure().error().mesg);
}
mlir::concretelang::LambdaArgument out{maybeProcessed.value()};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
results.push_back(tensor_arg);
}
return results;
}
std::unique_ptr<concretelang::clientlib::PublicArguments>
publicArgumentsUnserialize(
concretelang::clientlib::ClientParameters &clientParameters,
const std::string &buffer) {
auto publicArgumentsProto = Message<concreteprotocol::PublicArguments>();
if (publicArgumentsProto.readBinaryFromString(buffer).has_failure()) {
throw std::runtime_error("Failed to deserialize public arguments.");
}
std::vector<TransportValue> values;
for (auto arg : publicArgumentsProto.asReader().getArgs()) {
values.push_back(arg);
}
concretelang::clientlib::PublicArguments output{values};
return std::make_unique<concretelang::clientlib::PublicArguments>(
std::move(output));
}
std::string publicArgumentsSerialize(
concretelang::clientlib::PublicArguments &publicArguments) {
auto publicArgumentsProto = Message<concreteprotocol::PublicArguments>();
auto argBuilder =
publicArgumentsProto.asBuilder().initArgs(publicArguments.values.size());
for (size_t i = 0; i < publicArguments.values.size(); i++) {
argBuilder.setWithCaveats(i, publicArguments.values[i].asReader());
}
auto maybeBuffer = publicArgumentsProto.writeBinaryToString();
if (maybeBuffer.has_failure()) {
throw std::runtime_error("Failed to serialize public arguments.");
}
return maybeBuffer.value();
}
std::unique_ptr<concretelang::clientlib::PublicResult> publicResultUnserialize(
concretelang::clientlib::ClientParameters &clientParameters,
const std::string &buffer) {
auto publicResultsProto = Message<concreteprotocol::PublicResults>();
if (publicResultsProto.readBinaryFromString(buffer).has_failure()) {
throw std::runtime_error("Failed to deserialize public results.");
}
std::vector<TransportValue> values;
for (auto res : publicResultsProto.asReader().getResults()) {
values.push_back(res);
}
concretelang::clientlib::PublicResult output{values};
return std::make_unique<concretelang::clientlib::PublicResult>(
std::move(output));
}
std::string
publicResultSerialize(concretelang::clientlib::PublicResult &publicResult) {
std::string buffer;
auto publicResultsProto = Message<concreteprotocol::PublicResults>();
auto resBuilder =
publicResultsProto.asBuilder().initResults(publicResult.values.size());
for (size_t i = 0; i < publicResult.values.size(); i++) {
resBuilder.setWithCaveats(i, publicResult.values[i].asReader());
}
auto maybeBuffer = publicResultsProto.writeBinaryToString();
if (maybeBuffer.has_failure()) {
throw std::runtime_error("Failed to serialize public results.");
}
return maybeBuffer.value();
}
concretelang::clientlib::EvaluationKeys
evaluationKeysUnserialize(const std::string &buffer) {
auto serverKeysetProto = Message<concreteprotocol::ServerKeyset>();
auto maybeError = serverKeysetProto.readBinaryFromString(
buffer, capnp::ReaderOptions{7000000000, 64});
if (maybeError.has_failure()) {
throw std::runtime_error("Failed to deserialize server keyset." +
maybeError.as_failure().error().mesg);
}
auto serverKeyset =
concretelang::keysets::ServerKeyset::fromProto(serverKeysetProto);
concretelang::clientlib::EvaluationKeys output{serverKeyset};
return output;
}
std::string evaluationKeysSerialize(
concretelang::clientlib::EvaluationKeys &evaluationKeys) {
auto serverKeysetProto = evaluationKeys.keyset.toProto();
auto maybeBuffer = serverKeysetProto.writeBinaryToString();
if (maybeBuffer.has_failure()) {
throw std::runtime_error("Failed to serialize evaluation keys.");
}
return maybeBuffer.value();
}
std::unique_ptr<concretelang::clientlib::KeySet>
keySetUnserialize(const std::string &buffer) {
auto keysetProto = Message<concreteprotocol::Keyset>();
auto maybeError = keysetProto.readBinaryFromString(
buffer, capnp::ReaderOptions{7000000000, 64});
if (maybeError.has_failure()) {
throw std::runtime_error("Failed to deserialize keyset." +
maybeError.as_failure().error().mesg);
}
auto keyset = concretelang::keysets::Keyset::fromProto(keysetProto);
concretelang::clientlib::KeySet output{keyset};
return std::make_unique<concretelang::clientlib::KeySet>(std::move(output));
}
std::string keySetSerialize(concretelang::clientlib::KeySet &keySet) {
auto keysetProto = keySet.keyset.toProto();
auto maybeBuffer = keysetProto.writeBinaryToString();
if (maybeBuffer.has_failure()) {
throw std::runtime_error("Failed to serialize keys.");
}
return maybeBuffer.value();
}
concretelang::clientlib::SharedScalarOrTensorData
valueUnserialize(const std::string &buffer) {
auto inner = TransportValue();
if (inner.readBinaryFromString(buffer).has_failure()) {
throw std::runtime_error("Failed to deserialize Value");
}
return {inner};
}
std::string
valueSerialize(const concretelang::clientlib::SharedScalarOrTensorData &value) {
auto maybeString = value.value.writeBinaryToString();
if (maybeString.has_failure()) {
throw std::runtime_error("Failed to serialize Value");
}
return maybeString.value();
}
concretelang::clientlib::ValueExporter createValueExporter(
concretelang::clientlib::KeySet &keySet,
concretelang::clientlib::ClientParameters &clientParameters) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(), keySet.keyset.client,
std::make_shared<::concretelang::csprng::EncryptionCSPRNG>(
::concretelang::csprng::EncryptionCSPRNG(0)),
false);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto maybeCircuit = maybeProgram.value().getClientCircuit(
clientParameters.programInfo.asReader().getCircuits()[0].getName());
return ::concretelang::clientlib::ValueExporter{maybeCircuit.value()};
}
concretelang::clientlib::SimulatedValueExporter createSimulatedValueExporter(
concretelang::clientlib::ClientParameters &clientParameters) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo, ::concretelang::keysets::ClientKeyset(),
std::make_shared<::concretelang::csprng::EncryptionCSPRNG>(
::concretelang::csprng::EncryptionCSPRNG(0)),
true);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto maybeCircuit = maybeProgram.value().getClientCircuit(
clientParameters.programInfo.asReader().getCircuits()[0].getName());
return ::concretelang::clientlib::SimulatedValueExporter{
maybeCircuit.value()};
}
concretelang::clientlib::ValueDecrypter createValueDecrypter(
concretelang::clientlib::KeySet &keySet,
concretelang::clientlib::ClientParameters &clientParameters) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(), keySet.keyset.client,
std::make_shared<::concretelang::csprng::EncryptionCSPRNG>(
::concretelang::csprng::EncryptionCSPRNG(0)),
false);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto maybeCircuit = maybeProgram.value().getClientCircuit(
clientParameters.programInfo.asReader().getCircuits()[0].getName());
return ::concretelang::clientlib::ValueDecrypter{maybeCircuit.value()};
}
concretelang::clientlib::SimulatedValueDecrypter createSimulatedValueDecrypter(
concretelang::clientlib::ClientParameters &clientParameters) {
auto maybeProgram = ::concretelang::clientlib::ClientProgram::create(
clientParameters.programInfo.asReader(),
::concretelang::keysets::ClientKeyset(),
std::make_shared<::concretelang::csprng::EncryptionCSPRNG>(
::concretelang::csprng::EncryptionCSPRNG(0)),
true);
if (maybeProgram.has_failure()) {
throw std::runtime_error(maybeProgram.as_failure().error().mesg);
}
auto maybeCircuit = maybeProgram.value().getClientCircuit(
clientParameters.programInfo.asReader().getCircuits()[0].getName());
return ::concretelang::clientlib::SimulatedValueDecrypter{
maybeCircuit.value()};
}
concretelang::clientlib::ClientParameters
clientParametersUnserialize(const std::string &json) {
auto programInfo = Message<concreteprotocol::ProgramInfo>();
if (programInfo.readJsonFromString(json).has_failure()) {
throw std::runtime_error("Failed to deserialize client parameters");
}
return concretelang::clientlib::ClientParameters{programInfo, {}, {}, {}, {}};
}
std::string
clientParametersSerialize(concretelang::clientlib::ClientParameters &params) {
auto maybeJson = params.programInfo.writeJsonToString();
if (maybeJson.has_failure()) {
throw std::runtime_error("Failed to serialize client parameters");
}
return maybeJson.value();
}
void terminateDataflowParallelization() { _dfr_terminate(); }
void initDataflowParallelization() {
mlir::concretelang::dfr::_dfr_set_required(true);
}
std::string roundTrip(const char *module) {
std::shared_ptr<mlir::concretelang::CompilationContext> ccx =
mlir::concretelang::CompilationContext::createShared();
mlir::concretelang::CompilerEngine ce{ccx};
std::string backingString;
llvm::raw_string_ostream os(backingString);
llvm::Expected<mlir::concretelang::CompilerEngine::CompilationResult>
retOrErr = ce.compile(
module, mlir::concretelang::CompilerEngine::Target::ROUND_TRIP);
if (!retOrErr) {
os << "MLIR parsing failed: " << llvm::toString(retOrErr.takeError());
throw std::runtime_error(os.str());
}
retOrErr->mlirModuleRef->get().print(os);
return os.str();
}
bool lambdaArgumentIsTensor(lambdaArgument &lambda_arg) {
return !lambda_arg.ptr->value.isScalar();
}
std::vector<uint64_t> lambdaArgumentGetTensorData(lambdaArgument &lambda_arg) {
if (auto tensor = lambda_arg.ptr->value.getTensor<uint8_t>(); tensor) {
Tensor<uint64_t> out = (Tensor<uint64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<uint16_t>();
tensor) {
Tensor<uint64_t> out = (Tensor<uint64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<uint32_t>();
tensor) {
Tensor<uint64_t> out = (Tensor<uint64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<uint64_t>();
tensor) {
return tensor.value().values;
} else {
throw std::invalid_argument(
"LambdaArgument isn't a tensor or has an unsupported bitwidth");
}
}
std::vector<int64_t>
lambdaArgumentGetSignedTensorData(lambdaArgument &lambda_arg) {
if (auto tensor = lambda_arg.ptr->value.getTensor<int8_t>(); tensor) {
Tensor<int64_t> out = (Tensor<int64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<int16_t>(); tensor) {
Tensor<int64_t> out = (Tensor<int64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<int32_t>(); tensor) {
Tensor<int64_t> out = (Tensor<int64_t>)tensor.value();
return out.values;
} else if (auto tensor = lambda_arg.ptr->value.getTensor<int64_t>(); tensor) {
return tensor.value().values;
} else {
throw std::invalid_argument(
"LambdaArgument isn't a tensor or has an unsupported bitwidth");
}
}
std::vector<int64_t>
lambdaArgumentGetTensorDimensions(lambdaArgument &lambda_arg) {
std::vector<size_t> dims = lambda_arg.ptr->value.getDimensions();
return {dims.begin(), dims.end()};
}
bool lambdaArgumentIsScalar(lambdaArgument &lambda_arg) {
return lambda_arg.ptr->value.isScalar();
}
bool lambdaArgumentIsSigned(lambdaArgument &lambda_arg) {
return lambda_arg.ptr->value.isSigned();
}
uint64_t lambdaArgumentGetScalar(lambdaArgument &lambda_arg) {
if (lambda_arg.ptr->value.isScalar() &&
lambda_arg.ptr->value.hasElementType<uint64_t>()) {
return lambda_arg.ptr->value.getTensor<uint64_t>()->values[0];
} else {
throw std::invalid_argument("LambdaArgument isn't a scalar, should "
"be an IntLambdaArgument<uint64_t>");
}
}
int64_t lambdaArgumentGetSignedScalar(lambdaArgument &lambda_arg) {
if (lambda_arg.ptr->value.isScalar() &&
lambda_arg.ptr->value.hasElementType<int64_t>()) {
return lambda_arg.ptr->value.getTensor<int64_t>()->values[0];
} else {
throw std::invalid_argument("LambdaArgument isn't a scalar, should "
"be an IntLambdaArgument<int64_t>");
}
}
lambdaArgument lambdaArgumentFromTensorU8(std::vector<uint8_t> data,
std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<uint8_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
lambdaArgument lambdaArgumentFromTensorI8(std::vector<int8_t> data,
std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<int8_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
lambdaArgument lambdaArgumentFromTensorU16(std::vector<uint16_t> data,
std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<uint16_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
lambdaArgument lambdaArgumentFromTensorI16(std::vector<int16_t> data,
std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<int16_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
lambdaArgument lambdaArgumentFromTensorU32(std::vector<uint32_t> data,
std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<uint32_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
lambdaArgument lambdaArgumentFromTensorI32(std::vector<int32_t> data,
std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<int32_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
lambdaArgument lambdaArgumentFromTensorU64(std::vector<uint64_t> data,
std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<uint64_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
lambdaArgument lambdaArgumentFromTensorI64(std::vector<int64_t> data,
std::vector<int64_t> dimensions) {
std::vector<size_t> dims(dimensions.begin(), dimensions.end());
auto val = Value{((Tensor<int64_t>)Tensor<int64_t>(data, dims))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument tensor_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return tensor_arg;
}
lambdaArgument lambdaArgumentFromScalar(uint64_t scalar) {
auto val = Value{((Tensor<int64_t>)Tensor<uint64_t>(scalar))};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument scalar_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return scalar_arg;
}
lambdaArgument lambdaArgumentFromSignedScalar(int64_t scalar) {
auto val = Value{Tensor<int64_t>(scalar)};
mlir::concretelang::LambdaArgument out{val};
lambdaArgument scalar_arg{
std::make_shared<mlir::concretelang::LambdaArgument>(std::move(out))};
return scalar_arg;
}
/// Populate the compiler API python module.
void mlir::concretelang::python::populateCompilerAPISubmodule(
pybind11::module &m) {
m.doc() = "Concretelang compiler python API";
m.def("round_trip",
[](std::string mlir_input) { return roundTrip(mlir_input.c_str()); });
m.def("set_llvm_debug_flag", [](bool enable) { llvm::DebugFlag = enable; });
m.def("set_compiler_logging",
[](bool enable) { mlir::concretelang::setupLogging(enable); });
m.def("terminate_df_parallelization", &terminateDataflowParallelization);
m.def("init_df_parallelization", &initDataflowParallelization);
pybind11::enum_<mlir::concretelang::Backend>(m, "Backend")
.value("CPU", mlir::concretelang::Backend::CPU)
.value("GPU", mlir::concretelang::Backend::GPU)
.export_values();
pybind11::enum_<optimizer::Strategy>(m, "OptimizerStrategy")
.value("V0", optimizer::Strategy::V0)
.value("DAG_MONO", optimizer::Strategy::DAG_MONO)
.value("DAG_MULTI", optimizer::Strategy::DAG_MULTI)
.export_values();
pybind11::enum_<concrete_optimizer::MultiParamStrategy>(
m, "OptimizerMultiParameterStrategy")
.value("PRECISION", concrete_optimizer::MultiParamStrategy::ByPrecision)
.value("PRECISION_AND_NORM2",
concrete_optimizer::MultiParamStrategy::ByPrecisionAndNorm2)
.export_values();
pybind11::enum_<concrete_optimizer::Encoding>(m, "Encoding")
.value("AUTO", concrete_optimizer::Encoding::Auto)
.value("CRT", concrete_optimizer::Encoding::Crt)
.value("NATIVE", concrete_optimizer::Encoding::Native)
.export_values();
pybind11::class_<CompilationOptions>(m, "CompilationOptions")
.def(pybind11::init(
[](std::string funcname, mlir::concretelang::Backend backend) {
return CompilationOptions(funcname, backend);
}))
.def("set_funcname",
[](CompilationOptions &options, std::string funcname) {
options.mainFuncName = funcname;
})
.def("set_verify_diagnostics",
[](CompilationOptions &options, bool b) {
options.verifyDiagnostics = b;
})
.def("set_auto_parallelize", [](CompilationOptions &options,
bool b) { options.autoParallelize = b; })
.def("set_loop_parallelize", [](CompilationOptions &options,
bool b) { options.loopParallelize = b; })
.def("set_dataflow_parallelize",
[](CompilationOptions &options, bool b) {
options.dataflowParallelize = b;
})
.def("set_compress_evaluation_keys",
[](CompilationOptions &options, bool b) {
options.compressEvaluationKeys = b;
})
.def("set_optimize_concrete", [](CompilationOptions &options,
bool b) { options.optimizeTFHE = b; })
.def("set_p_error",
[](CompilationOptions &options, double p_error) {
options.optimizerConfig.p_error = p_error;
})
.def("set_display_optimizer_choice",
[](CompilationOptions &options, bool display) {
options.optimizerConfig.display = display;
})
.def("set_optimizer_strategy",
[](CompilationOptions &options, optimizer::Strategy strategy) {
options.optimizerConfig.strategy = strategy;
})
.def("set_optimizer_multi_parameter_strategy",
[](CompilationOptions &options,
concrete_optimizer::MultiParamStrategy strategy) {
options.optimizerConfig.multi_param_strategy = strategy;
})
.def("set_global_p_error",
[](CompilationOptions &options, double global_p_error) {
options.optimizerConfig.global_p_error = global_p_error;
})
.def("set_composable",
[](CompilationOptions &options, bool composable) {
options.optimizerConfig.composable = composable;
})
.def("set_security_level",
[](CompilationOptions &options, int security_level) {
options.optimizerConfig.security = security_level;
})
.def("set_v0_parameter",
[](CompilationOptions &options, size_t glweDimension,
size_t logPolynomialSize, size_t nSmall, size_t brLevel,
size_t brLogBase, size_t ksLevel, size_t ksLogBase) {
options.v0Parameter = {glweDimension, logPolynomialSize, nSmall,
brLevel, brLogBase, ksLevel,
ksLogBase, std::nullopt};
})
.def("set_v0_parameter",
[](CompilationOptions &options, size_t glweDimension,
size_t logPolynomialSize, size_t nSmall, size_t brLevel,
size_t brLogBase, size_t ksLevel, size_t ksLogBase,
mlir::concretelang::CRTDecomposition crtDecomposition,
size_t cbsLevel, size_t cbsLogBase, size_t pksLevel,
size_t pksLogBase, size_t pksInputLweDimension,
size_t pksOutputPolynomialSize) {
mlir::concretelang::PackingKeySwitchParameter pksParam = {
pksInputLweDimension, pksOutputPolynomialSize, pksLevel,
pksLogBase};
mlir::concretelang::CitcuitBoostrapParameter crbParam = {
cbsLevel, cbsLogBase};
mlir::concretelang::WopPBSParameter wopPBSParam = {pksParam,
crbParam};
mlir::concretelang::LargeIntegerParameter largeIntegerParam = {
crtDecomposition, wopPBSParam};
options.v0Parameter = {glweDimension, logPolynomialSize, nSmall,
brLevel, brLogBase, ksLevel,
ksLogBase, largeIntegerParam};
})
.def("force_encoding",
[](CompilationOptions &options,
concrete_optimizer::Encoding encoding) {
options.optimizerConfig.encoding = encoding;
})
.def("simulation", [](CompilationOptions &options,
bool simulate) { options.simulate = simulate; })
.def("set_emit_gpu_ops",
[](CompilationOptions &options, bool emit_gpu_ops) {
options.emitGPUOps = emit_gpu_ops;
})
.def("set_batch_tfhe_ops",
[](CompilationOptions &options, bool batch_tfhe_ops) {
options.batchTFHEOps = batch_tfhe_ops;
});
pybind11::enum_<mlir::concretelang::PrimitiveOperation>(m,
"PrimitiveOperation")
.value("PBS", mlir::concretelang::PrimitiveOperation::PBS)
.value("WOP_PBS", mlir::concretelang::PrimitiveOperation::WOP_PBS)
.value("KEY_SWITCH", mlir::concretelang::PrimitiveOperation::KEY_SWITCH)
.value("CLEAR_ADDITION",
mlir::concretelang::PrimitiveOperation::CLEAR_ADDITION)
.value("ENCRYPTED_ADDITION",
mlir::concretelang::PrimitiveOperation::ENCRYPTED_ADDITION)
.value("CLEAR_MULTIPLICATION",
mlir::concretelang::PrimitiveOperation::CLEAR_MULTIPLICATION)
.value("ENCRYPTED_NEGATION",
mlir::concretelang::PrimitiveOperation::ENCRYPTED_NEGATION)
.export_values();
pybind11::enum_<mlir::concretelang::KeyType>(m, "KeyType")
.value("SECRET", mlir::concretelang::KeyType::SECRET)
.value("BOOTSTRAP", mlir::concretelang::KeyType::BOOTSTRAP)
.value("KEY_SWITCH", mlir::concretelang::KeyType::KEY_SWITCH)
.value("PACKING_KEY_SWITCH",
mlir::concretelang::KeyType::PACKING_KEY_SWITCH)
.export_values();
pybind11::class_<mlir::concretelang::Statistic>(m, "Statistic")
.def_readonly("operation", &mlir::concretelang::Statistic::operation)
.def_readonly("location", &mlir::concretelang::Statistic::location)
.def_readonly("keys", &mlir::concretelang::Statistic::keys)
.def_readonly("count", &mlir::concretelang::Statistic::count);
pybind11::class_<mlir::concretelang::CompilationFeedback>(
m, "CompilationFeedback")
.def_readonly("complexity",
&mlir::concretelang::CompilationFeedback::complexity)
.def_readonly("p_error", &mlir::concretelang::CompilationFeedback::pError)
.def_readonly("global_p_error",
&mlir::concretelang::CompilationFeedback::globalPError)
.def_readonly(
"total_secret_keys_size",
&mlir::concretelang::CompilationFeedback::totalSecretKeysSize)
.def_readonly(
"total_bootstrap_keys_size",
&mlir::concretelang::CompilationFeedback::totalBootstrapKeysSize)
.def_readonly(
"total_keyswitch_keys_size",
&mlir::concretelang::CompilationFeedback::totalKeyswitchKeysSize)
.def_readonly("total_inputs_size",
&mlir::concretelang::CompilationFeedback::totalInputsSize)
.def_readonly("total_output_size",
&mlir::concretelang::CompilationFeedback::totalOutputsSize)
.def_readonly(
"crt_decompositions_of_outputs",
&mlir::concretelang::CompilationFeedback::crtDecompositionsOfOutputs)
.def_readonly("statistics",
&mlir::concretelang::CompilationFeedback::statistics)
.def_readonly(
"memory_usage_per_location",
&mlir::concretelang::CompilationFeedback::memoryUsagePerLoc);
pybind11::class_<mlir::concretelang::CompilationContext,
std::shared_ptr<mlir::concretelang::CompilationContext>>(
m, "CompilationContext")
.def(pybind11::init([]() {
return mlir::concretelang::CompilationContext::createShared();
}))
.def("mlir_context",
[](std::shared_ptr<mlir::concretelang::CompilationContext> cctx) {
auto mlirCtx = cctx->getMLIRContext();
return pybind11::reinterpret_steal<pybind11::object>(
mlirPythonContextToCapsule(wrap(mlirCtx)));
});
pybind11::class_<mlir::concretelang::LibraryCompilationResult>(
m, "LibraryCompilationResult")
.def(pybind11::init([](std::string outputDirPath, std::string funcname) {
return mlir::concretelang::LibraryCompilationResult{
outputDirPath,
funcname,
};
}));
pybind11::class_<::concretelang::serverlib::ServerLambda>(m, "LibraryLambda");
pybind11::class_<LibrarySupport_Py>(m, "LibrarySupport")
.def(pybind11::init(
[](std::string outputPath, std::string runtimeLibraryPath,
bool generateSharedLib, bool generateStaticLib,
bool generateClientParameters, bool generateCompilationFeedback,
bool generateCppHeader) {
return library_support(
outputPath.c_str(), runtimeLibraryPath.c_str(),
generateSharedLib, generateStaticLib, generateClientParameters,
generateCompilationFeedback, generateCppHeader);
}))
.def("compile",
[](LibrarySupport_Py &support, std::string mlir_program,
mlir::concretelang::CompilationOptions options) {
SignalGuard signalGuard;
return library_compile(support, mlir_program.c_str(), options);
})
.def("compile",
[](LibrarySupport_Py &support, pybind11::object mlir_module,
mlir::concretelang::CompilationOptions options,
std::shared_ptr<mlir::concretelang::CompilationContext> cctx) {
SignalGuard signalGuard;
return library_compile_module(
support,
unwrap(mlirPythonCapsuleToModule(mlir_module.ptr())).clone(),
options, cctx);
})
.def("load_client_parameters",
[](LibrarySupport_Py &support,
mlir::concretelang::LibraryCompilationResult &result) {
return library_load_client_parameters(support, result);
})
.def("load_compilation_feedback",
[](LibrarySupport_Py &support,
mlir::concretelang::LibraryCompilationResult &result) {
return library_load_compilation_feedback(support, result);
})
.def(
"load_server_lambda",
[](LibrarySupport_Py &support,
mlir::concretelang::LibraryCompilationResult &result,
bool useSimulation) {
return library_load_server_lambda(support, result, useSimulation);
},
pybind11::return_value_policy::reference)
.def("server_call",
[](LibrarySupport_Py &support,
::concretelang::serverlib::ServerLambda lambda,
::concretelang::clientlib::PublicArguments &publicArguments,
::concretelang::clientlib::EvaluationKeys &evaluationKeys) {
SignalGuard signalGuard;
return library_server_call(support, lambda, publicArguments,
evaluationKeys);
})
.def("simulate",
[](LibrarySupport_Py &support,
::concretelang::serverlib::ServerLambda lambda,
::concretelang::clientlib::PublicArguments &publicArguments) {
pybind11::gil_scoped_release release;
return library_simulate(support, lambda, publicArguments);
})
.def("get_shared_lib_path",
[](LibrarySupport_Py &support) {
return library_get_shared_lib_path(support);
})
.def("get_program_info_path", [](LibrarySupport_Py &support) {
return library_get_program_info_path(support);
});
class ClientSupport {};
pybind11::class_<ClientSupport>(m, "ClientSupport")
.def(pybind11::init())
.def_static(
"key_set",
[](::concretelang::clientlib::ClientParameters clientParameters,
::concretelang::clientlib::KeySetCache *cache,
uint64_t secretSeedMsb, uint64_t secretSeedLsb,
uint64_t encSeedMsb, uint64_t encSeedLsb) {
SignalGuard signalGuard;
auto optCache =
cache == nullptr
? std::nullopt
: std::optional<::concretelang::clientlib::KeySetCache>(
*cache);
return key_set(clientParameters, optCache, secretSeedMsb,
secretSeedLsb, encSeedMsb, encSeedLsb);
},
pybind11::arg().none(false), pybind11::arg().none(true),
pybind11::arg("secretSeedMsb") = 0,
pybind11::arg("secretSeedLsb") = 0, pybind11::arg("encSeedMsb") = 0,
pybind11::arg("encSeedLsb") = 0)
.def_static(
"encrypt_arguments",
[](::concretelang::clientlib::ClientParameters clientParameters,
::concretelang::clientlib::KeySet &keySet,
std::vector<lambdaArgument> args) {
std::vector<mlir::concretelang::LambdaArgument *> argsRef;
for (auto i = 0u; i < args.size(); i++) {
argsRef.push_back(args[i].ptr.get());
}
return encrypt_arguments(clientParameters, keySet, argsRef);
})
.def_static(
"decrypt_result",
[](::concretelang::clientlib::ClientParameters clientParameters,
::concretelang::clientlib::KeySet &keySet,
::concretelang::clientlib::PublicResult &publicResult) {
return decrypt_result(clientParameters, keySet, publicResult);
});
pybind11::class_<::concretelang::clientlib::KeySetCache>(m, "KeySetCache")
.def(pybind11::init<std::string &>());
pybind11::class_<::concretelang::clientlib::LweSecretKeyParam>(
m, "LweSecretKeyParam")
.def("dimension", [](::concretelang::clientlib::LweSecretKeyParam &key) {
return key.info.asReader().getParams().getLweDimension();
});
pybind11::class_<::concretelang::clientlib::BootstrapKeyParam>(
m, "BootstrapKeyParam")
.def("input_secret_key_id",
[](::concretelang::clientlib::BootstrapKeyParam &key) {
return key.info.asReader().getInputId();
})
.def("output_secret_key_id",
[](::concretelang::clientlib::BootstrapKeyParam &key) {
return key.info.asReader().getOutputId();
})
.def("level",
[](::concretelang::clientlib::BootstrapKeyParam &key) {
return key.info.asReader().getParams().getLevelCount();
})
.def("base_log",
[](::concretelang::clientlib::BootstrapKeyParam &key) {
return key.info.asReader().getParams().getBaseLog();
})
.def("glwe_dimension",
[](::concretelang::clientlib::BootstrapKeyParam &key) {
return key.info.asReader().getParams().getGlweDimension();
})
.def("variance",
[](::concretelang::clientlib::BootstrapKeyParam &key) {
return key.info.asReader().getParams().getVariance();
})
.def("polynomial_size",
[](::concretelang::clientlib::BootstrapKeyParam &key) {
return key.info.asReader().getParams().getPolynomialSize();
})
.def("input_lwe_dimension",
[](::concretelang::clientlib::BootstrapKeyParam &key) {
return key.info.asReader().getParams().getInputLweDimension();
});
pybind11::class_<::concretelang::clientlib::KeyswitchKeyParam>(
m, "KeyswitchKeyParam")
.def("input_secret_key_id",
[](::concretelang::clientlib::KeyswitchKeyParam &key) {
return key.info.asReader().getInputId();
})
.def("output_secret_key_id",
[](::concretelang::clientlib::KeyswitchKeyParam &key) {
return key.info.asReader().getOutputId();
})
.def("level",
[](::concretelang::clientlib::KeyswitchKeyParam &key) {
return key.info.asReader().getParams().getLevelCount();
})
.def("base_log",
[](::concretelang::clientlib::KeyswitchKeyParam &key) {
return key.info.asReader().getParams().getBaseLog();
})
.def("variance", [](::concretelang::clientlib::KeyswitchKeyParam &key) {
return key.info.asReader().getParams().getVariance();
});
pybind11::class_<::concretelang::clientlib::PackingKeyswitchKeyParam>(
m, "PackingKeyswitchKeyParam")
.def("input_secret_key_id",
[](::concretelang::clientlib::PackingKeyswitchKeyParam &key) {
return key.info.asReader().getInputId();
})
.def("output_secret_key_id",
[](::concretelang::clientlib::PackingKeyswitchKeyParam &key) {
return key.info.asReader().getOutputId();
})
.def("level",
[](::concretelang::clientlib::PackingKeyswitchKeyParam &key) {
return key.info.asReader().getParams().getLevelCount();
})
.def("base_log",
[](::concretelang::clientlib::PackingKeyswitchKeyParam &key) {
return key.info.asReader().getParams().getBaseLog();
})
.def("glwe_dimension",
[](::concretelang::clientlib::PackingKeyswitchKeyParam &key) {
return key.info.asReader().getParams().getGlweDimension();
})
.def("polynomial_size",
[](::concretelang::clientlib::PackingKeyswitchKeyParam &key) {
return key.info.asReader().getParams().getPolynomialSize();
})
.def("input_lwe_dimension",
[](::concretelang::clientlib::PackingKeyswitchKeyParam &key) {
return key.info.asReader().getParams().getInputLweDimension();
})
.def("variance",
[](::concretelang::clientlib::PackingKeyswitchKeyParam &key) {
return key.info.asReader().getParams().getVariance();
});
pybind11::class_<::concretelang::clientlib::ClientParameters>(
m, "ClientParameters")
.def_static("deserialize",
[](const pybind11::bytes &buffer) {
return clientParametersUnserialize(buffer);
})
.def("serialize",
[](::concretelang::clientlib::ClientParameters &clientParameters) {
return pybind11::bytes(
clientParametersSerialize(clientParameters));
})
.def("output_signs",
[](::concretelang::clientlib::ClientParameters &clientParameters) {
std::vector<bool> result;
for (auto output : clientParameters.programInfo.asReader()
.getCircuits()[0]
.getOutputs()) {
if (output.getTypeInfo().hasLweCiphertext() &&
output.getTypeInfo()
.getLweCiphertext()
.getEncoding()
.hasInteger()) {
result.push_back(output.getTypeInfo()
.getLweCiphertext()
.getEncoding()
.getInteger()
.getIsSigned());
} else {
result.push_back(true);
}
}
return result;
})
.def("input_signs",
[](::concretelang::clientlib::ClientParameters &clientParameters) {
std::vector<bool> result;
for (auto input : clientParameters.programInfo.asReader()
.getCircuits()[0]
.getInputs()) {
if (input.getTypeInfo().hasLweCiphertext() &&
input.getTypeInfo()
.getLweCiphertext()
.getEncoding()
.hasInteger()) {
result.push_back(input.getTypeInfo()
.getLweCiphertext()
.getEncoding()
.getInteger()
.getIsSigned());
} else {
result.push_back(true);
}
}
return result;
})
.def_readonly("secret_keys",
&::concretelang::clientlib::ClientParameters::secretKeys)
.def_readonly("bootstrap_keys",
&::concretelang::clientlib::ClientParameters::bootstrapKeys)
.def_readonly("keyswitch_keys",
&::concretelang::clientlib::ClientParameters::keyswitchKeys)
.def_readonly(
"packing_keyswitch_keys",
&::concretelang::clientlib::ClientParameters::packingKeyswitchKeys);
pybind11::class_<::concretelang::clientlib::KeySet>(m, "KeySet")
.def_static("deserialize",
[](const pybind11::bytes &buffer) {
std::unique_ptr<::concretelang::clientlib::KeySet> result =
keySetUnserialize(buffer);
return result;
})
.def("serialize",
[](::concretelang::clientlib::KeySet &keySet) {
return pybind11::bytes(keySetSerialize(keySet));
})
.def("get_evaluation_keys",
[](::concretelang::clientlib::KeySet &keySet) {
return ::concretelang::clientlib::EvaluationKeys{
keySet.keyset.server};
});
pybind11::class_<::concretelang::clientlib::SharedScalarOrTensorData>(m,
"Value")
.def_static("deserialize",
[](const pybind11::bytes &buffer) {
return valueUnserialize(buffer);
})
.def(
"serialize",
[](const ::concretelang::clientlib::SharedScalarOrTensorData &value) {
return pybind11::bytes(valueSerialize(value));
});
pybind11::class_<::concretelang::clientlib::ValueExporter>(m, "ValueExporter")
.def_static(
"create",
[](::concretelang::clientlib::KeySet &keySet,
::concretelang::clientlib::ClientParameters &clientParameters) {
return createValueExporter(keySet, clientParameters);
})
.def("export_scalar",
[](::concretelang::clientlib::ValueExporter &exporter,
size_t position, int64_t value) {
SignalGuard signalGuard;
auto info = exporter.circuit.getCircuitInfo()
.asReader()
.getInputs()[position];
auto typeTransformer = getPythonTypeTransformer(info);
auto result = exporter.circuit.prepareInput(
typeTransformer({Tensor<int64_t>(value)}), position);
if (result.has_error()) {
throw std::runtime_error(result.error().mesg);
}
return ::concretelang::clientlib::SharedScalarOrTensorData{
result.value()};
})
.def("export_tensor", [](::concretelang::clientlib::ValueExporter
&exporter,
size_t position, std::vector<int64_t> values,
std::vector<int64_t> shape) {
SignalGuard signalGuard;
std::vector<size_t> dimensions(shape.begin(), shape.end());
auto info =
exporter.circuit.getCircuitInfo().asReader().getInputs()[position];
auto typeTransformer = getPythonTypeTransformer(info);
auto result = exporter.circuit.prepareInput(
typeTransformer({Tensor<int64_t>(values, dimensions)}), position);
if (result.has_error()) {
throw std::runtime_error(result.error().mesg);
}
return ::concretelang::clientlib::SharedScalarOrTensorData{
result.value()};
});
pybind11::class_<::concretelang::clientlib::SimulatedValueExporter>(
m, "SimulatedValueExporter")
.def_static(
"create",
[](::concretelang::clientlib::ClientParameters &clientParameters) {
return createSimulatedValueExporter(clientParameters);
})
.def("export_scalar",
[](::concretelang::clientlib::SimulatedValueExporter &exporter,
size_t position, int64_t value) {
SignalGuard signalGuard;
auto info = exporter.circuit.getCircuitInfo()
.asReader()
.getInputs()[position];
auto typeTransformer = getPythonTypeTransformer(info);
auto result = exporter.circuit.prepareInput(
typeTransformer({Tensor<int64_t>(value)}), position);
if (result.has_error()) {
throw std::runtime_error(result.error().mesg);
}
return ::concretelang::clientlib::SharedScalarOrTensorData{
result.value()};
})
.def("export_tensor", [](::concretelang::clientlib::SimulatedValueExporter
&exporter,
size_t position, std::vector<int64_t> values,
std::vector<int64_t> shape) {
SignalGuard signalGuard;
std::vector<size_t> dimensions(shape.begin(), shape.end());
auto info =
exporter.circuit.getCircuitInfo().asReader().getInputs()[position];
auto typeTransformer = getPythonTypeTransformer(info);
auto result = exporter.circuit.prepareInput(
typeTransformer({Tensor<int64_t>(values, dimensions)}), position);
if (result.has_error()) {
throw std::runtime_error(result.error().mesg);
}
return ::concretelang::clientlib::SharedScalarOrTensorData{
result.value()};
});
pybind11::class_<::concretelang::clientlib::ValueDecrypter>(m,
"ValueDecrypter")
.def_static(
"create",
[](::concretelang::clientlib::KeySet &keySet,
::concretelang::clientlib::ClientParameters &clientParameters) {
return createValueDecrypter(keySet, clientParameters);
})
.def("decrypt",
[](::concretelang::clientlib::ValueDecrypter &decrypter,
size_t position,
::concretelang::clientlib::SharedScalarOrTensorData &value) {
SignalGuard signalGuard;
auto result =
decrypter.circuit.processOutput(value.value, position);
if (result.has_error()) {
throw std::runtime_error(result.error().mesg);
}
return lambdaArgument{
std::make_shared<mlir::concretelang::LambdaArgument>(
mlir::concretelang::LambdaArgument{result.value()})};
});
pybind11::class_<::concretelang::clientlib::SimulatedValueDecrypter>(
m, "SimulatedValueDecrypter")
.def_static(
"create",
[](::concretelang::clientlib::ClientParameters &clientParameters) {
return createSimulatedValueDecrypter(clientParameters);
})
.def("decrypt",
[](::concretelang::clientlib::SimulatedValueDecrypter &decrypter,
size_t position,
::concretelang::clientlib::SharedScalarOrTensorData &value) {
SignalGuard signalGuard;
auto result =
decrypter.circuit.processOutput(value.value, position);
if (result.has_error()) {
throw std::runtime_error(result.error().mesg);
}
return lambdaArgument{
std::make_shared<mlir::concretelang::LambdaArgument>(
mlir::concretelang::LambdaArgument{result.value()})};
});
pybind11::class_<::concretelang::clientlib::PublicArguments,
std::unique_ptr<::concretelang::clientlib::PublicArguments>>(
m, "PublicArguments")
.def_static(
"create",
[](const ::concretelang::clientlib::ClientParameters
&clientParameters,
std::vector<::concretelang::clientlib::SharedScalarOrTensorData>
&buffers) {
std::vector<TransportValue> vals;
for (auto buf : buffers) {
vals.push_back(buf.value);
}
return ::concretelang::clientlib::PublicArguments{vals};
})
.def_static(
"deserialize",
[](::concretelang::clientlib::ClientParameters &clientParameters,
const pybind11::bytes &buffer) {
return publicArgumentsUnserialize(clientParameters, buffer);
})
.def("serialize",
[](::concretelang::clientlib::PublicArguments &publicArgument) {
return pybind11::bytes(publicArgumentsSerialize(publicArgument));
});
pybind11::class_<::concretelang::clientlib::PublicResult>(m, "PublicResult")
.def_static(
"deserialize",
[](::concretelang::clientlib::ClientParameters &clientParameters,
const pybind11::bytes &buffer) {
return publicResultUnserialize(clientParameters, buffer);
})
.def("serialize",
[](::concretelang::clientlib::PublicResult &publicResult) {
return pybind11::bytes(publicResultSerialize(publicResult));
})
.def("n_values",
[](const ::concretelang::clientlib::PublicResult &publicResult) {
return publicResult.values.size();
})
.def("get_value",
[](::concretelang::clientlib::PublicResult &publicResult,
size_t position) {
if (position >= publicResult.values.size()) {
throw std::runtime_error("Failed to get public result value.");
}
return ::concretelang::clientlib::SharedScalarOrTensorData{
publicResult.values[position]};
});
pybind11::class_<::concretelang::clientlib::EvaluationKeys>(m,
"EvaluationKeys")
.def_static("deserialize",
[](const pybind11::bytes &buffer) {
return evaluationKeysUnserialize(buffer);
})
.def("serialize",
[](::concretelang::clientlib::EvaluationKeys &evaluationKeys) {
return pybind11::bytes(evaluationKeysSerialize(evaluationKeys));
});
pybind11::class_<lambdaArgument>(m, "LambdaArgument")
.def_static("from_tensor_u8",
[](std::vector<uint8_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorU8(tensor, dims);
})
.def_static("from_tensor_u16",
[](std::vector<uint16_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorU16(tensor, dims);
})
.def_static("from_tensor_u32",
[](std::vector<uint32_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorU32(tensor, dims);
})
.def_static("from_tensor_u64",
[](std::vector<uint64_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorU64(tensor, dims);
})
.def_static("from_tensor_i8",
[](std::vector<int8_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorI8(tensor, dims);
})
.def_static("from_tensor_i16",
[](std::vector<int16_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorI16(tensor, dims);
})
.def_static("from_tensor_i32",
[](std::vector<int32_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorI32(tensor, dims);
})
.def_static("from_tensor_i64",
[](std::vector<int64_t> tensor, std::vector<int64_t> dims) {
return lambdaArgumentFromTensorI64(tensor, dims);
})
.def_static("from_scalar", lambdaArgumentFromScalar)
.def_static("from_signed_scalar", lambdaArgumentFromSignedScalar)
.def("is_tensor",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentIsTensor(lambda_arg);
})
.def("get_tensor_data",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentGetTensorData(lambda_arg);
})
.def("get_signed_tensor_data",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentGetSignedTensorData(lambda_arg);
})
.def("get_tensor_shape",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentGetTensorDimensions(lambda_arg);
})
.def("is_scalar",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentIsScalar(lambda_arg);
})
.def("is_signed",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentIsSigned(lambda_arg);
})
.def("get_scalar",
[](lambdaArgument &lambda_arg) {
return lambdaArgumentGetScalar(lambda_arg);
})
.def("get_signed_scalar", [](lambdaArgument &lambda_arg) {
return lambdaArgumentGetSignedScalar(lambda_arg);
});
}