mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-08 19:44:57 -05:00
115 lines
3.4 KiB
Python
115 lines
3.4 KiB
Python
import numpy as np
|
|
import pytest
|
|
import shutil
|
|
import tempfile
|
|
|
|
from concrete.compiler import (
|
|
ClientSupport,
|
|
EvaluationKeys,
|
|
LibrarySupport,
|
|
PublicArguments,
|
|
PublicResult,
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"mlir, args, expected_result",
|
|
[
|
|
pytest.param(
|
|
"""
|
|
|
|
func.func @main(%arg0: !FHE.eint<5>, %arg1: i6) -> !FHE.eint<5> {
|
|
%1 = "FHE.add_eint_int"(%arg0, %arg1): (!FHE.eint<5>, i6) -> (!FHE.eint<5>)
|
|
return %1: !FHE.eint<5>
|
|
}
|
|
|
|
""",
|
|
(5, 7),
|
|
12,
|
|
id="enc_plain_int_args",
|
|
marks=pytest.mark.xfail,
|
|
),
|
|
pytest.param(
|
|
"""
|
|
|
|
func.func @main(%arg0: !FHE.eint<5>, %arg1: !FHE.eint<5>) -> !FHE.eint<5> {
|
|
%1 = "FHE.add_eint"(%arg0, %arg1): (!FHE.eint<5>, !FHE.eint<5>) -> (!FHE.eint<5>)
|
|
return %1: !FHE.eint<5>
|
|
}
|
|
|
|
""",
|
|
(5, 7),
|
|
12,
|
|
id="enc_enc_int_args",
|
|
),
|
|
pytest.param(
|
|
"""
|
|
|
|
func.func @main(%arg0: tensor<4x!FHE.eint<5>>, %arg1: tensor<4xi6>) -> !FHE.eint<5> {
|
|
%ret = "FHELinalg.dot_eint_int"(%arg0, %arg1) : (tensor<4x!FHE.eint<5>>, tensor<4xi6>) -> !FHE.eint<5>
|
|
return %ret : !FHE.eint<5>
|
|
}
|
|
|
|
""",
|
|
(
|
|
np.array([1, 2, 3, 4], dtype=np.uint8),
|
|
np.array([4, 3, 2, 1], dtype=np.uint8),
|
|
),
|
|
20,
|
|
id="enc_plain_ndarray_args",
|
|
marks=pytest.mark.xfail,
|
|
),
|
|
pytest.param(
|
|
"""
|
|
|
|
func.func @main(%a0: tensor<4x!FHE.eint<5>>, %a1: tensor<4x!FHE.eint<5>>) -> tensor<4x!FHE.eint<5>> {
|
|
%res = "FHELinalg.add_eint"(%a0, %a1) : (tensor<4x!FHE.eint<5>>, tensor<4x!FHE.eint<5>>) -> tensor<4x!FHE.eint<5>>
|
|
return %res : tensor<4x!FHE.eint<5>>
|
|
}
|
|
|
|
""",
|
|
(
|
|
np.array([1, 2, 3, 4], dtype=np.uint8),
|
|
np.array([7, 0, 1, 5], dtype=np.uint8),
|
|
),
|
|
np.array([8, 2, 4, 9]),
|
|
id="enc_enc_ndarray_args",
|
|
),
|
|
],
|
|
)
|
|
def test_client_server_end_to_end(mlir, args, expected_result, keyset_cache):
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
support = LibrarySupport.new(str(tmpdirname))
|
|
compilation_result = support.compile(mlir)
|
|
server_lambda = support.load_server_lambda(compilation_result)
|
|
|
|
client_parameters = support.load_client_parameters(compilation_result)
|
|
keyset = ClientSupport.key_set(client_parameters, keyset_cache)
|
|
|
|
evaluation_keys = keyset.get_evaluation_keys()
|
|
evaluation_keys_serialized = evaluation_keys.serialize()
|
|
evaluation_keys_deserialized = EvaluationKeys.deserialize(
|
|
evaluation_keys_serialized
|
|
)
|
|
|
|
args = ClientSupport.encrypt_arguments(client_parameters, keyset, args)
|
|
args_serialized = args.serialize()
|
|
args_deserialized = PublicArguments.deserialize(
|
|
client_parameters, args_serialized
|
|
)
|
|
|
|
result = support.server_call(
|
|
server_lambda,
|
|
args_deserialized,
|
|
evaluation_keys_deserialized,
|
|
)
|
|
result_serialized = result.serialize()
|
|
result_deserialized = PublicResult.deserialize(
|
|
client_parameters, result_serialized
|
|
)
|
|
|
|
output = ClientSupport.decrypt_result(
|
|
client_parameters, keyset, result_deserialized
|
|
)
|
|
assert np.array_equal(output, expected_result)
|