mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-09 12:15:09 -05:00
This commit rebases the compiler onto commit f69328049e9e from llvm-project. Changes: * Use of the one-shot bufferizer for improved memory management * A new pass `OneShotBufferizeDPSWrapper` that converts functions returning tensors to destination-passing-style as required by the one-shot bufferizer * A new pass `LinalgGenericOpWithTensorsToLoopsPass` that converts `linalg.generic` operations with value semantics to loop nests * Rebase onto a fork of llvm-project at f69328049e9e with local modifications to enable bufferization of `linalg.generic` operations with value semantics * Workaround for the absence of type propagation after type conversion via extra patterns in all dialect conversion passes * Printer, parser and verifier definitions moved from inline declarations in ODS to the respective source files as required by upstream changes * New tests for functions with a large number of inputs * Increase the number of allowed task inputs as required by new tests * Use upstream function `mlir_configure_python_dev_packages()` to locate Python development files for compatibility with various CMake versions Co-authored-by: Quentin Bourgerie <quentin.bourgerie@zama.ai> Co-authored-by: Ayoub Benaissa <ayoub.benaissa@zama.ai> Co-authored-by: Antoniu Pop <antoniu.pop@zama.ai>
73 lines
2.4 KiB
C++
73 lines
2.4 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include <concretelang/Conversion/Passes.h>
|
|
#include <concretelang/Support/LinalgExtras.h>
|
|
#include <mlir/Dialect/Linalg/IR/Linalg.h>
|
|
#include <mlir/Transforms/GreedyPatternRewriteDriver.h>
|
|
|
|
namespace {
|
|
struct LinalgGenericOpWithTensorsToLoopsPass
|
|
: public LinalgGenericOpWithTensorsToLoopsBase<
|
|
LinalgGenericOpWithTensorsToLoopsPass> {
|
|
LinalgGenericOpWithTensorsToLoopsPass() = delete;
|
|
LinalgGenericOpWithTensorsToLoopsPass(bool parallelizeLoops)
|
|
: parallelizeLoops(parallelizeLoops){};
|
|
void runOnOperation() final;
|
|
|
|
private:
|
|
bool parallelizeLoops;
|
|
};
|
|
} // namespace
|
|
|
|
template <typename LoopType>
|
|
class LinalgRewritePattern
|
|
: public mlir::OpRewritePattern<mlir::linalg::GenericOp> {
|
|
public:
|
|
using OpRewritePattern<mlir::linalg::GenericOp>::OpRewritePattern;
|
|
|
|
LinalgRewritePattern(::mlir::MLIRContext *context, bool parallelizeLoops,
|
|
mlir::PatternBenefit benefit = 0)
|
|
: parallelizeLoops(parallelizeLoops),
|
|
::mlir::OpRewritePattern<mlir::linalg::GenericOp>(context, benefit) {}
|
|
|
|
mlir::LogicalResult
|
|
matchAndRewrite(mlir::linalg::GenericOp linalgOp,
|
|
mlir::PatternRewriter &rewriter) const override {
|
|
mlir::FailureOr<mlir::linalg::LinalgLoops> loops =
|
|
mlir::concretelang::linalgextras::linalgTensorOpToLoopsImpl<LoopType>(
|
|
rewriter, linalgOp, parallelizeLoops);
|
|
|
|
if (((mlir::LogicalResult)loops).failed() || loops->size() == 0)
|
|
return mlir::failure();
|
|
|
|
rewriter.replaceOp(linalgOp, loops.getValue()[0]->getResult(0));
|
|
|
|
return mlir::success();
|
|
};
|
|
|
|
private:
|
|
bool parallelizeLoops;
|
|
};
|
|
|
|
void LinalgGenericOpWithTensorsToLoopsPass::runOnOperation() {
|
|
auto op = this->getOperation();
|
|
|
|
mlir::RewritePatternSet patterns(&getContext());
|
|
patterns.insert<LinalgRewritePattern<mlir::scf::ForOp>>(&getContext(),
|
|
parallelizeLoops);
|
|
(void)applyPatternsAndFoldGreedily(op, std::move(patterns));
|
|
}
|
|
|
|
namespace mlir {
|
|
namespace concretelang {
|
|
std::unique_ptr<OperationPass<ModuleOp>>
|
|
createLinalgGenericOpWithTensorsToLoopsPass(bool parallelizeLoops) {
|
|
return std::make_unique<LinalgGenericOpWithTensorsToLoopsPass>(
|
|
parallelizeLoops);
|
|
}
|
|
} // namespace concretelang
|
|
} // namespace mlir
|