Files
concrete/scripts.py
2021-05-20 11:23:07 +01:00

290 lines
9.9 KiB
Python

import estimator as est
import matplotlib.pyplot as plt
from sage.stats.distributions.discrete_gaussian_lattice import DiscreteGaussianDistributionIntegerSampler
from concrete_params import concrete_LWE_params, concrete_RLWE_params
# define the four cost models used for Concrete (2 classical, 2 quantum)
# note that classical and quantum are the two models used in the "HE Std"
classical = lambda beta, d, B: ZZ(2) ** RR(0.292 * beta + 16.4 + log(8 * d, 2)),
quantum = lambda beta, d, B: ZZ(2) ** RR(0.265 * beta + 16.4 + log(8 * d, 2)),
classical_conservative = lambda beta, d, B: ZZ(2) ** RR(0.292 * beta),
quantum_conservative = lambda beta, d, B: ZZ(2) ** RR(0.265 * beta),
cost_models = [classical, quantum, classical_conservative, quantum_conservative]
# functions to automate parameter selection
def get_security_level(estimate):
""" Function to get the security level from an LWE Estimator output,
i.e. returns only the bit-security level (without the attack params)
:param estimate: the input estimate
EXAMPLE:
sage: x = estimate_lwe(n = 256, q = 2**32, alpha = RR(8/2**32))
sage: get_security_level(x)
33.8016789754458
"""
levels = []
# use try/except to cover cases where we only consider one or two attacks
try:
levels.append(estimate["usvp"]["rop"])
except:
pass
try:
levels.append(estimate["dec"]["rop"])
except:
pass
try:
levels.append(estimate["dual"]["rop"])
except:
pass
# take the minimum attack cost (in bits)
security_level = log(min(levels), 2)
return security_level
def get_all_security_levels(params):
""" A function which gets the security levels of a collection of TFHE parameters,
using the four cost models: classical, quantum, classical_conservative, and
quantum_conservative
:param params: a dictionary of LWE parameter sets (see concrete_params)
EXAMPLE:
sage: X = get_all_security_levels(concrete_LWE_params)
sage: X
[['LWE128_256',
126.692189756144,
117.566189756144,
98.6960000000000,
89.5700000000000], ...]
"""
RESULTS = []
for param in params:
results = [param]
x = params["{}".format(param)]
n = x["n"] * x["k"]
q = 2 ** 32
sd = 2 ** (x["sd"]) * q
alpha = sqrt(2 * pi) * sd / RR(q)
secret_distribution = (0, 1)
# assume access to an infinite number of papers
m = oo
for model in cost_models:
model = model[0]
estimate = est.estimate_lwe(n, alpha, q, secret_distribution=secret_distribution,
reduction_cost_model=model, m=oo)
results.append(get_security_level(estimate))
RESULTS.append(results)
return RESULTS
def inequality(x, y):
""" A function which compresses the conditions
x < y and x > y into a single condition via a
multiplier
"""
if x <= y:
return 1
if x > y:
return -1
def automated_param_select_n(sd, n=None, q=2 ** 32, reduction_cost_model=est.BKZ.sieve, secret_distribution=(0, 1),
target_security=128):
""" A function used to generate the smallest value of n which allows for
target_security bits of security, for the input values of (sd,q)
:param sd: the standard deviation of the error
:param q: the LWE modulus (q = 2**32, 2**64 in TFHE)
:param reduction_cost_model: the BKZ cost model considered, BKZ.sieve is default
:param secret_distribution: the LWE secret distribution
:param target_security: the target number of bits of security, 128 is default
EXAMPLE:
sage: X = automated_param_select_n(sd = -25, q = 2**32)
sage: X
1054
"""
if n is None:
# pick some random n which gets us close (based on concrete_LWE_params)
n = sd * (-25) * (target_security/80)
sd = 2 ** sd * q
alpha = sqrt(2 * pi) * sd / RR(q)
# initial estimate, to determine if we are above or below the target security level
estimate = est.estimate_lwe(n, alpha, q, secret_distribution=secret_distribution,
reduction_cost_model=reduction_cost_model, m=oo, skip = {"bkw","dec","arora-gb","mitm"})
security_level = get_security_level(estimate)
z = inequality(security_level, target_security)
while z * security_level < z * target_security:
estimate = est.estimate_lwe(n, alpha, q, secret_distribution=secret_distribution,
reduction_cost_model=reduction_cost_model, m=oo, skip = {"bkw","dec","arora-gb","mitm"})
security_level = get_security_level(estimate)
n += 1
print("the finalised parameters are {}, {}, with a security level of {}".format(n, q, security_level))
return ZZ(n)
def automated_param_select_sd(n, sd=None, q=2 ** 32, reduction_cost_model=est.BKZ.sieve, secret_distribution=(0, 1),
target_security=128):
""" A function used to generate the smallest value of sd which allows for
target_security bits of security, for the input values of (n,q)
:param n: the LWE dimension
:param q: the LWE modulus (q = 2**32, 2**64 in TFHE)
:param reduction_cost_model: the BKZ cost model considered, BKZ.sieve is default
:param secret_distribution: the LWE secret distribution
:param target_security: the target number of bits of security, 128 is default
EXAMPLE
sage: X = automated_param_select_sd(n = 1054, q = 2**32)
sage: X
-26
"""
if sd is None:
# pick some random sd which gets us close (based on concrete_LWE_params)
sd = round(n * 80 / (target_security * (-25)))
sd_ = 2 ** sd * q
alpha = sqrt(2 * pi) * sd_ / RR(q)
# initial estimate, to determine if we are above or below the target security level
estimate = est.estimate_lwe(n, alpha, q, secret_distribution=secret_distribution,
reduction_cost_model=reduction_cost_model, m=oo, skip = {"bkw","dec","arora-gb","mitm"})
security_level = get_security_level(estimate)
z = inequality(security_level, target_security)
while z * security_level < z * target_security:
sd += z * 1
sd_ = 2 ** sd * q
alpha = sqrt(2 * pi) * sd_ / RR(q)
estimate = est.estimate_lwe(n, alpha, q, secret_distribution=secret_distribution,
reduction_cost_model=reduction_cost_model, m=oo, skip = {"bkw","dec","arora-gb","mitm"})
security_level = get_security_level(estimate)
# final estimate (we went too far in the above loop)
sd -= z * 1
sd_ = 2 ** sd * q
alpha = sqrt(2 * pi) * sd_ / RR(q)
estimate = est.estimate_lwe(n, alpha, q, secret_distribution=secret_distribution,
reduction_cost_model=reduction_cost_model, m=oo)
security_level = get_security_level(estimate)
print("the finalised parameters are n = {}, log2(sd) = {}, log2(q) = {}, with a security level of {}-bits".format(n,
sd,
log(q,
2),
security_level))
return sd
def generate_parameter_matrix(n_range, sd=None, q=2 ** 32, reduction_cost_model=est.BKZ.sieve,
secret_distribution=(0, 1), target_security=128):
"""
:param n_range: a tuple (n_min, n_max) giving the values of n for which to generate parameters
:param sd: the standard deviation of the LWE error
:param q: the LWE modulus (q = 2**32, 2**64 in TFHE)
:param reduction_cost_model: the BKZ cost model considered, BKZ.sieve is default
:param secret_distribution: the LWE secret distribution
:param target_security: the target number of bits of security, 128 is default
TODO: we should probably parallelise this function for speed
TODO: code seems to fail when the initial estimate is < target_security bits
EXAMPLE:
sage: X = generate_parameter_matrix([788, 790])
sage: X
[(788, 4294967296, -20.0), (789, 4294967296, -20.0)]
"""
RESULTS = []
# grab min and max value/s of n
(n_min, n_max) = n_range
sd_ = sd
for n in range(n_min, n_max):
sd = automated_param_select_sd(n, sd=sd_, q=q, reduction_cost_model=reduction_cost_model,
secret_distribution=secret_distribution, target_security=target_security)
sd_ = sd
RESULTS.append((n, q, sd))
return RESULTS
def generate_parameter_step(results):
"""
Plot results
:param results: an output of generate_parameter_matrix
returns: a step plot of chosen parameters
"""
N = []
SD = []
for (n, q, sd) in results:
N.append(n)
SD.append(sd)
plt.step(N, SD)
plt.show()
return plt
def test_rounded_gaussian(sigma, number_samples):
"""
TODO: actually use a _rounded_ gaussian to match Concrete
A function which simulates sampling from a Discrete Gaussian distribution
:param sigma: the standard deviation
:param number_samples: the number of samples to draw
returns: a list of (value, count) pairs (essentially a histogram)
EXAMPLE:
sage: X = test_rounded_gaussian(2/3, 100000)
sage: X
[(-3, 2), (-2, 714), (-1, 19495), (0, 59658), (1, 19452), (2, 678), (3, 1)]
"""
D = DiscreteGaussianDistributionIntegerSampler(sigma)
samples = []
for i in range(number_samples):
samples.append(D())
# now create a histogram
hist = []
for val in set(samples):
hist.append((val, samples.count(val)))
# sort (values)
hist.sort(key=lambda x:x[0])
return hist