Files
concrete/compiler/lib/Dialect/TFHE/IR/TFHEOps.cpp

172 lines
6.2 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/master/LICENSE.txt
// for license information.
#include "mlir/IR/Region.h"
#include "concretelang/Dialect/FHE/IR/FHEOps.h"
#include "concretelang/Dialect/TFHE/IR/TFHEOps.h"
#include "concretelang/Dialect/TFHE/IR/TFHETypes.h"
namespace mlir {
namespace concretelang {
namespace TFHE {
void emitOpErrorForIncompatibleGLWEParameter(mlir::OpState &op,
llvm::Twine parameter) {
op.emitOpError() << "should have the same GLWE '" << parameter
<< "' parameter";
}
mlir::LogicalResult _verifyGLWEIntegerOperator(mlir::OpState &op,
GLWECipherTextType &a,
IntegerType &b,
GLWECipherTextType &result) {
// verify consistency of a and result GLWE parameter
if (a.getDimension() != result.getDimension()) {
emitOpErrorForIncompatibleGLWEParameter(op, "dimension");
return mlir::failure();
}
if (a.getPolynomialSize() != result.getPolynomialSize()) {
emitOpErrorForIncompatibleGLWEParameter(op, "polynomialSize");
return mlir::failure();
}
if (a.getBits() != result.getBits()) {
emitOpErrorForIncompatibleGLWEParameter(op, "bits");
return mlir::failure();
}
if (a.getP() != result.getP()) {
emitOpErrorForIncompatibleGLWEParameter(op, "p");
return mlir::failure();
}
// verify consistency of width of inputs
if ((int)b.getWidth() > a.getP() + 1) {
op.emitOpError()
<< "should have the width of `b` equals or less than 'p'+1: "
<< b.getWidth() << " <= " << a.getP() << "+ 1";
return mlir::failure();
}
return mlir::success();
}
// verifyGLWEIntegerOperator verify parameters of operators that has the
// following signature (!TFHE.glwe<{dim,poly,bits}{p}>, ip+1) ->
// (!TFHE.glwe<{dim,poly,bits}{p}>))
template <class Operator>
mlir::LogicalResult verifyGLWEIntegerOperator(Operator &op) {
auto a = ((mlir::Type)(op.a().getType())).cast<GLWECipherTextType>();
auto b = ((mlir::Type)(op.b().getType())).cast<IntegerType>();
auto result =
((mlir::Type)(op.getResult().getType())).cast<GLWECipherTextType>();
return _verifyGLWEIntegerOperator(op, a, b, result);
}
// verifyIntegerGLWEOperator verify parameters of operators that has the
// following signature (ip+1, !TFHE.glwe<{dim,poly,bits}{p}>) ->
// (!TFHE.glwe<{dim,poly,bits}{p}>))
template <class Operator>
mlir::LogicalResult verifyIntegerGLWEOperator(Operator &op) {
auto a = ((mlir::Type)(op.a().getType())).cast<IntegerType>();
auto b = ((mlir::Type)(op.b().getType())).cast<GLWECipherTextType>();
auto result =
((mlir::Type)(op.getResult().getType())).cast<GLWECipherTextType>();
return _verifyGLWEIntegerOperator(op, b, a, result);
}
// verifyBinaryGLWEOperator verify parameters of operators that has the
// following signature (!TFHE.glwe<{dim,poly,bits}{p}>,
// !TFHE.glwe<{dim,poly,bits}{p}>) ->
// (!TFHE.glwe<{dim,poly,bits}{p}>))
template <class Operator>
mlir::LogicalResult verifyBinaryGLWEOperator(Operator &op) {
auto a = ((mlir::Type)(op.a().getType())).cast<GLWECipherTextType>();
auto b = ((mlir::Type)(op.b().getType())).cast<GLWECipherTextType>();
auto result =
((mlir::Type)(op.getResult().getType())).cast<GLWECipherTextType>();
// verify consistency of a and result GLWE parameter
if (a.getDimension() != b.getDimension() ||
a.getDimension() != result.getDimension()) {
emitOpErrorForIncompatibleGLWEParameter(op, "dimension");
return mlir::failure();
}
if (a.getPolynomialSize() != b.getPolynomialSize() ||
a.getPolynomialSize() != result.getPolynomialSize()) {
emitOpErrorForIncompatibleGLWEParameter(op, "polynomialSize");
return mlir::failure();
}
if (a.getBits() != b.getBits() || a.getBits() != result.getBits()) {
emitOpErrorForIncompatibleGLWEParameter(op, "bits");
return mlir::failure();
}
if (a.getP() != b.getP() || a.getP() != result.getP()) {
emitOpErrorForIncompatibleGLWEParameter(op, "p");
return mlir::failure();
}
return mlir::success();
}
// verifyUnaryGLWEOperator verify parameters of operators that has the following
// signature (!TFHE.glwe<{dim,poly,bits}{p}>) ->
// (!TFHE.glwe<{dim,poly,bits}{p}>))
template <class Operator>
mlir::LogicalResult verifyUnaryGLWEOperator(Operator &op) {
auto a = ((mlir::Type)(op.a().getType())).cast<GLWECipherTextType>();
auto result =
((mlir::Type)(op.getResult().getType())).cast<GLWECipherTextType>();
// verify consistency of a and result GLWE parameter
if (a.getDimension() != result.getDimension()) {
emitOpErrorForIncompatibleGLWEParameter(op, "dimension");
return mlir::failure();
}
if (a.getPolynomialSize() != result.getPolynomialSize()) {
emitOpErrorForIncompatibleGLWEParameter(op, "polynomialSize");
return mlir::failure();
}
if (a.getBits() != result.getBits()) {
emitOpErrorForIncompatibleGLWEParameter(op, "bits");
return mlir::failure();
}
if (a.getP() != result.getP()) {
emitOpErrorForIncompatibleGLWEParameter(op, "p");
return mlir::failure();
}
return mlir::success();
}
/// verifyApplyLookupTable verify the GLWE parameters follow the rules:
/// - The l_cst argument must be a memref of one dimension of size 2^p
/// - The lookup table contains integer values of the same width of the output
mlir::LogicalResult verifyApplyLookupTable(ApplyLookupTable &op) {
auto ct = op.ct().getType().cast<GLWECipherTextType>();
auto l_cst = op.l_cst().getType().cast<RankedTensorType>();
// Check the shape of l_cst argument
auto width = ct.getP();
auto expectedSize = 1 << width;
mlir::SmallVector<int64_t, 1> expectedShape{expectedSize};
if (!l_cst.hasStaticShape(expectedShape)) {
FHE::emitErrorBadLutSize(op, "l_cst", "ct", expectedSize, width);
return mlir::failure();
}
if (!l_cst.getElementType().isInteger(64)) {
op.emitOpError() << "should have the i64 constant";
return mlir::failure();
}
return mlir::success();
}
} // namespace TFHE
} // namespace concretelang
} // namespace mlir
#define GET_OP_CLASSES
#include "concretelang/Dialect/TFHE/IR/TFHEOps.cpp.inc"