Files
concrete/compilers/concrete-compiler/compiler/lib/ClientLib/PublicArguments.cpp

173 lines
6.0 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include <iostream>
#include <stdlib.h>
#include "concretelang/ClientLib/PublicArguments.h"
#include "concretelang/ClientLib/Serializers.h"
namespace concretelang {
namespace clientlib {
using concretelang::error::StringError;
// TODO: optimize the move
PublicArguments::PublicArguments(
const ClientParameters &clientParameters,
std::vector<clientlib::SharedScalarOrTensorData> &buffers)
: clientParameters(clientParameters) {
arguments = buffers;
}
PublicArguments::~PublicArguments() {}
outcome::checked<void, StringError>
PublicArguments::serialize(std::ostream &ostream) {
if (incorrectMode(ostream)) {
return StringError(
"PublicArguments::serialize: ostream should be in binary mode");
}
serializeVectorOfScalarOrTensorData(arguments, ostream);
if (ostream.bad()) {
return StringError(
"PublicArguments::serialize: cannot serialize public arguments");
}
return outcome::success();
}
outcome::checked<void, StringError>
PublicArguments::unserializeArgs(std::istream &istream) {
OUTCOME_TRY(arguments, unserializeVectorOfScalarOrTensorData(istream));
return outcome::success();
}
outcome::checked<std::unique_ptr<PublicArguments>, StringError>
PublicArguments::unserialize(const ClientParameters &expectedParams,
std::istream &istream) {
std::vector<SharedScalarOrTensorData> emptyBuffers;
auto sArguments =
std::make_unique<PublicArguments>(expectedParams, emptyBuffers);
OUTCOME_TRYV(sArguments->unserializeArgs(istream));
return std::move(sArguments);
}
outcome::checked<void, StringError>
PublicResult::unserialize(std::istream &istream) {
OUTCOME_TRY(buffers, unserializeVectorOfScalarOrTensorData(istream));
return outcome::success();
}
outcome::checked<void, StringError>
PublicResult::serialize(std::ostream &ostream) {
serializeVectorOfScalarOrTensorData(buffers, ostream);
if (ostream.bad()) {
return StringError("PublicResult::serialize: cannot serialize");
}
return outcome::success();
}
void next_coord_index(size_t index[], size_t sizes[], size_t rank) {
// increase multi dim index
for (int r = rank - 1; r >= 0; r--) {
if (index[r] < sizes[r] - 1) {
index[r]++;
return;
}
index[r] = 0;
}
}
size_t global_index(size_t index[], size_t sizes[], size_t strides[],
size_t rank) {
// compute global index from multi dim index
size_t g_index = 0;
size_t default_stride = 1;
for (int r = rank - 1; r >= 0; r--) {
g_index += index[r] * ((strides[r] == 0) ? default_stride : strides[r]);
default_stride *= sizes[r];
}
return g_index;
}
static inline bool isReferenceToMLIRGlobalMemory(void *ptr) {
return reinterpret_cast<uintptr_t>(ptr) == 0xdeadbeef;
}
template <typename T>
TensorData tensorDataFromMemRefTyped(size_t memref_rank, void *allocatedVoid,
void *alignedVoid, size_t offset,
size_t *sizes, size_t *strides) {
T *allocated = reinterpret_cast<T *>(allocatedVoid);
T *aligned = reinterpret_cast<T *>(alignedVoid);
TensorData result(llvm::ArrayRef<size_t>{sizes, memref_rank}, sizeof(T) * 8,
std::is_signed<T>());
assert(aligned != nullptr);
// ephemeral multi dim index to compute global strides
size_t *index = new size_t[memref_rank];
for (size_t r = 0; r < memref_rank; r++) {
index[r] = 0;
}
auto len = result.length();
// TODO: add a fast path for dense result (no real strides)
for (size_t i = 0; i < len; i++) {
int g_index = offset + global_index(index, sizes, strides, memref_rank);
result.getElementReference<T>(i) = aligned[g_index];
next_coord_index(index, sizes, memref_rank);
}
delete[] index;
// TEMPORARY: That quick and dirty but as this function is used only to
// convert a result of the mlir program and as data are copied here, we
// release the alocated pointer if it set.
if (allocated != nullptr && !isReferenceToMLIRGlobalMemory(allocated)) {
free(allocated);
}
return result;
}
TensorData tensorDataFromMemRef(size_t memref_rank, size_t element_width,
bool is_signed, void *allocated, void *aligned,
size_t offset, size_t *sizes, size_t *strides) {
ElementType et = getElementTypeFromWidthAndSign(element_width, is_signed);
switch (et) {
case ElementType::i64:
return tensorDataFromMemRefTyped<int64_t>(memref_rank, allocated, aligned,
offset, sizes, strides);
case ElementType::u64:
return tensorDataFromMemRefTyped<uint64_t>(memref_rank, allocated, aligned,
offset, sizes, strides);
case ElementType::i32:
return tensorDataFromMemRefTyped<int32_t>(memref_rank, allocated, aligned,
offset, sizes, strides);
case ElementType::u32:
return tensorDataFromMemRefTyped<uint32_t>(memref_rank, allocated, aligned,
offset, sizes, strides);
case ElementType::i16:
return tensorDataFromMemRefTyped<int16_t>(memref_rank, allocated, aligned,
offset, sizes, strides);
case ElementType::u16:
return tensorDataFromMemRefTyped<uint16_t>(memref_rank, allocated, aligned,
offset, sizes, strides);
case ElementType::i8:
return tensorDataFromMemRefTyped<int8_t>(memref_rank, allocated, aligned,
offset, sizes, strides);
case ElementType::u8:
return tensorDataFromMemRefTyped<uint8_t>(memref_rank, allocated, aligned,
offset, sizes, strides);
}
// Cannot happen
assert(false);
}
} // namespace clientlib
} // namespace concretelang