mirror of
https://github.com/zama-ai/concrete.git
synced 2026-02-08 19:44:57 -05:00
173 lines
6.0 KiB
C++
173 lines
6.0 KiB
C++
// Part of the Concrete Compiler Project, under the BSD3 License with Zama
|
|
// Exceptions. See
|
|
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
|
|
// for license information.
|
|
|
|
#include <iostream>
|
|
#include <stdlib.h>
|
|
|
|
#include "concretelang/ClientLib/PublicArguments.h"
|
|
#include "concretelang/ClientLib/Serializers.h"
|
|
|
|
namespace concretelang {
|
|
namespace clientlib {
|
|
|
|
using concretelang::error::StringError;
|
|
|
|
// TODO: optimize the move
|
|
PublicArguments::PublicArguments(
|
|
const ClientParameters &clientParameters,
|
|
std::vector<clientlib::SharedScalarOrTensorData> &buffers)
|
|
: clientParameters(clientParameters) {
|
|
arguments = buffers;
|
|
}
|
|
|
|
PublicArguments::~PublicArguments() {}
|
|
|
|
outcome::checked<void, StringError>
|
|
PublicArguments::serialize(std::ostream &ostream) {
|
|
if (incorrectMode(ostream)) {
|
|
return StringError(
|
|
"PublicArguments::serialize: ostream should be in binary mode");
|
|
}
|
|
serializeVectorOfScalarOrTensorData(arguments, ostream);
|
|
if (ostream.bad()) {
|
|
return StringError(
|
|
"PublicArguments::serialize: cannot serialize public arguments");
|
|
}
|
|
return outcome::success();
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
PublicArguments::unserializeArgs(std::istream &istream) {
|
|
OUTCOME_TRY(arguments, unserializeVectorOfScalarOrTensorData(istream));
|
|
return outcome::success();
|
|
}
|
|
|
|
outcome::checked<std::unique_ptr<PublicArguments>, StringError>
|
|
PublicArguments::unserialize(const ClientParameters &expectedParams,
|
|
std::istream &istream) {
|
|
std::vector<SharedScalarOrTensorData> emptyBuffers;
|
|
auto sArguments =
|
|
std::make_unique<PublicArguments>(expectedParams, emptyBuffers);
|
|
OUTCOME_TRYV(sArguments->unserializeArgs(istream));
|
|
return std::move(sArguments);
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
PublicResult::unserialize(std::istream &istream) {
|
|
OUTCOME_TRY(buffers, unserializeVectorOfScalarOrTensorData(istream));
|
|
return outcome::success();
|
|
}
|
|
|
|
outcome::checked<void, StringError>
|
|
PublicResult::serialize(std::ostream &ostream) {
|
|
serializeVectorOfScalarOrTensorData(buffers, ostream);
|
|
if (ostream.bad()) {
|
|
return StringError("PublicResult::serialize: cannot serialize");
|
|
}
|
|
return outcome::success();
|
|
}
|
|
|
|
void next_coord_index(size_t index[], size_t sizes[], size_t rank) {
|
|
// increase multi dim index
|
|
for (int r = rank - 1; r >= 0; r--) {
|
|
if (index[r] < sizes[r] - 1) {
|
|
index[r]++;
|
|
return;
|
|
}
|
|
index[r] = 0;
|
|
}
|
|
}
|
|
|
|
size_t global_index(size_t index[], size_t sizes[], size_t strides[],
|
|
size_t rank) {
|
|
// compute global index from multi dim index
|
|
size_t g_index = 0;
|
|
size_t default_stride = 1;
|
|
for (int r = rank - 1; r >= 0; r--) {
|
|
g_index += index[r] * ((strides[r] == 0) ? default_stride : strides[r]);
|
|
default_stride *= sizes[r];
|
|
}
|
|
return g_index;
|
|
}
|
|
|
|
static inline bool isReferenceToMLIRGlobalMemory(void *ptr) {
|
|
return reinterpret_cast<uintptr_t>(ptr) == 0xdeadbeef;
|
|
}
|
|
|
|
template <typename T>
|
|
TensorData tensorDataFromMemRefTyped(size_t memref_rank, void *allocatedVoid,
|
|
void *alignedVoid, size_t offset,
|
|
size_t *sizes, size_t *strides) {
|
|
T *allocated = reinterpret_cast<T *>(allocatedVoid);
|
|
T *aligned = reinterpret_cast<T *>(alignedVoid);
|
|
|
|
TensorData result(llvm::ArrayRef<size_t>{sizes, memref_rank}, sizeof(T) * 8,
|
|
std::is_signed<T>());
|
|
assert(aligned != nullptr);
|
|
|
|
// ephemeral multi dim index to compute global strides
|
|
size_t *index = new size_t[memref_rank];
|
|
for (size_t r = 0; r < memref_rank; r++) {
|
|
index[r] = 0;
|
|
}
|
|
auto len = result.length();
|
|
|
|
// TODO: add a fast path for dense result (no real strides)
|
|
for (size_t i = 0; i < len; i++) {
|
|
int g_index = offset + global_index(index, sizes, strides, memref_rank);
|
|
result.getElementReference<T>(i) = aligned[g_index];
|
|
next_coord_index(index, sizes, memref_rank);
|
|
}
|
|
delete[] index;
|
|
// TEMPORARY: That quick and dirty but as this function is used only to
|
|
// convert a result of the mlir program and as data are copied here, we
|
|
// release the alocated pointer if it set.
|
|
|
|
if (allocated != nullptr && !isReferenceToMLIRGlobalMemory(allocated)) {
|
|
free(allocated);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
TensorData tensorDataFromMemRef(size_t memref_rank, size_t element_width,
|
|
bool is_signed, void *allocated, void *aligned,
|
|
size_t offset, size_t *sizes, size_t *strides) {
|
|
ElementType et = getElementTypeFromWidthAndSign(element_width, is_signed);
|
|
|
|
switch (et) {
|
|
case ElementType::i64:
|
|
return tensorDataFromMemRefTyped<int64_t>(memref_rank, allocated, aligned,
|
|
offset, sizes, strides);
|
|
case ElementType::u64:
|
|
return tensorDataFromMemRefTyped<uint64_t>(memref_rank, allocated, aligned,
|
|
offset, sizes, strides);
|
|
case ElementType::i32:
|
|
return tensorDataFromMemRefTyped<int32_t>(memref_rank, allocated, aligned,
|
|
offset, sizes, strides);
|
|
case ElementType::u32:
|
|
return tensorDataFromMemRefTyped<uint32_t>(memref_rank, allocated, aligned,
|
|
offset, sizes, strides);
|
|
case ElementType::i16:
|
|
return tensorDataFromMemRefTyped<int16_t>(memref_rank, allocated, aligned,
|
|
offset, sizes, strides);
|
|
case ElementType::u16:
|
|
return tensorDataFromMemRefTyped<uint16_t>(memref_rank, allocated, aligned,
|
|
offset, sizes, strides);
|
|
case ElementType::i8:
|
|
return tensorDataFromMemRefTyped<int8_t>(memref_rank, allocated, aligned,
|
|
offset, sizes, strides);
|
|
case ElementType::u8:
|
|
return tensorDataFromMemRefTyped<uint8_t>(memref_rank, allocated, aligned,
|
|
offset, sizes, strides);
|
|
}
|
|
|
|
// Cannot happen
|
|
assert(false);
|
|
}
|
|
|
|
} // namespace clientlib
|
|
} // namespace concretelang
|