Files
concrete/frontends/concrete-python/tests/mlir/test_converter.py

843 lines
39 KiB
Python

"""
Tests of `Converter` class.
"""
import numpy as np
import pytest
from concrete import fhe
from concrete.fhe.mlir import GraphConverter
def assign(x, y):
"""
Assign scalar `y` into vector `x`.
"""
x[0] = y
return x
@pytest.mark.parametrize(
"function,encryption_statuses,inputset,expected_error,expected_message",
[
pytest.param(
lambda x, y: x + y,
{"x": "encrypted", "y": "encrypted"},
[(0.0, 0), (7.0, 7), (0.0, 7), (7.0, 0)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<float64> ∈ [0.0, 7.0]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integers are supported
%1 = y # EncryptedScalar<uint3> ∈ [0, 7]
%2 = add(%0, %1) # EncryptedScalar<float64> ∈ [0.0, 14.0]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ only integers are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x: fhe.conv(x, [[[3, 1, 0, 2]]]),
{"x": "encrypted"},
[np.ones(shape=(1, 1, 10), dtype=np.int64)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint1, shape=(1, 1, 10)> ∈ [1, 1]
%1 = [[[3 1 0 2]]] # ClearTensor<uint2, shape=(1, 1, 4)> ∈ [0, 3]
%2 = conv1d(%0, %1, [0], pads=(0, 0), strides=(1,), dilations=(1,), group=1) # EncryptedTensor<uint3, shape=(1, 1, 7)> ∈ [6, 6]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1-dimensional convolutions are not supported at the moment
return %2
""", # noqa: E501
),
pytest.param(
lambda x: fhe.conv(x, [[[[[1, 3], [4, 2]]]]]),
{"x": "encrypted"},
[np.ones(shape=(1, 1, 3, 4, 5), dtype=np.int64)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint1, shape=(1, 1, 3, 4, 5)> ∈ [1, 1]
%1 = [[[[[1 3] [4 2]]]]] # ClearTensor<uint3, shape=(1, 1, 1, 2, 2)> ∈ [1, 4]
%2 = conv3d(%0, %1, [0], pads=(0, 0, 0, 0, 0, 0), strides=(1, 1, 1), dilations=(1, 1, 1), group=1) # EncryptedTensor<uint4, shape=(1, 1, 3, 3, 4)> ∈ [10, 10]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3-dimensional convolutions are not supported at the moment
return %2
""", # noqa: E501
),
pytest.param(
lambda x: fhe.maxpool(x, kernel_shape=(3,)),
{"x": "encrypted"},
[np.ones(shape=(1, 1, 10), dtype=np.int64)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint1, shape=(1, 1, 10)> ∈ [1, 1]
%1 = maxpool1d(%0, kernel_shape=(3,), strides=(1,), pads=(0, 0), dilations=(1,), ceil_mode=False) # EncryptedTensor<uint1, shape=(1, 1, 8)> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 1-dimensional maxpooling is not supported at the moment
return %1
""", # noqa: E501
),
pytest.param(
lambda x: fhe.maxpool(x, kernel_shape=(3, 1, 2)),
{"x": "encrypted"},
[np.ones(shape=(1, 1, 3, 4, 5), dtype=np.int64)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint1, shape=(1, 1, 3, 4, 5)> ∈ [1, 1]
%1 = maxpool3d(%0, kernel_shape=(3, 1, 2), strides=(1, 1, 1), pads=(0, 0, 0, 0, 0, 0), dilations=(1, 1, 1), ceil_mode=False) # EncryptedTensor<uint1, shape=(1, 1, 1, 4, 4)> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 3-dimensional maxpooling is not supported at the moment
return %1
""", # noqa: E501
),
pytest.param(
lambda x, y: x + y,
{"x": "clear", "y": "clear"},
[(0, 0), (7, 7), (0, 7), (7, 0)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearScalar<uint3> ∈ [0, 7]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ lhs is clear
%1 = y # ClearScalar<uint3> ∈ [0, 7]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ rhs is clear
%2 = add(%0, %1) # ClearScalar<uint4> ∈ [0, 14]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear-clear additions are not supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x - y,
{"x": "clear", "y": "clear"},
[(0, 0), (7, 7), (0, 7), (7, 0)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearScalar<uint3> ∈ [0, 7]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ lhs is clear
%1 = y # ClearScalar<uint3> ∈ [0, 7]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ rhs is clear
%2 = subtract(%0, %1) # ClearScalar<int4> ∈ [-7, 7]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear-clear subtractions are not supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x * y,
{"x": "clear", "y": "clear"},
[(0, 0), (7, 7), (0, 7), (7, 0)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearScalar<uint3> ∈ [0, 7]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ lhs is clear
%1 = y # ClearScalar<uint3> ∈ [0, 7]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ rhs is clear
%2 = multiply(%0, %1) # ClearScalar<uint6> ∈ [0, 49]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear-clear multiplications are not supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: np.dot(x, y),
{"x": "clear", "y": "clear"},
[([1, 2], [3, 4])],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint2, shape=(2,)> ∈ [1, 2]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ lhs is clear
%1 = y # ClearTensor<uint3, shape=(2,)> ∈ [3, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ rhs is clear
%2 = dot(%0, %1) # ClearScalar<uint4> ∈ [11, 11]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear-clear dot products are not supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x: np.broadcast_to(x, shape=(2, 2)),
{"x": "clear"},
[[1, 2], [3, 4]],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint3, shape=(2,)> ∈ [1, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ value is clear
%1 = broadcast_to(%0, shape=(2, 2)) # ClearTensor<uint3, shape=(2, 2)> ∈ [1, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear values cannot be broadcasted
return %1
""", # noqa: E501
),
pytest.param(
assign,
{"x": "clear", "y": "encrypted"},
[([1, 2, 3], 0)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint2, shape=(3,)> ∈ [0, 3]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ tensor is clear
%1 = y # EncryptedScalar<uint1> ∈ [0, 0]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ assigned value is encrypted
%2 = (%0[0] = %1) # ClearTensor<uint2, shape=(3,)> ∈ [0, 3]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but encrypted values cannot be assigned to clear tensors
return %2
""", # noqa: E501
),
pytest.param(
lambda x: x**2 + (x + 1_000_000),
{"x": "encrypted"},
[100_000],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<uint17> ∈ [100000, 100000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 34-bit value is used as an input to a table lookup
(note that it's assigned 34-bits during compilation because of its relation with other operations)
%1 = 2 # ClearScalar<uint2> ∈ [2, 2]
%2 = power(%0, %1) # EncryptedScalar<uint34> ∈ [10000000000, 10000000000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit table lookups are supported
%3 = 1000000 # ClearScalar<uint20> ∈ [1000000, 1000000]
%4 = add(%0, %3) # EncryptedScalar<uint21> ∈ [1100000, 1100000]
%5 = add(%2, %4) # EncryptedScalar<uint34> ∈ [10001100000, 10001100000]
return %5
""", # noqa: E501
),
pytest.param(
lambda x, y: x & y,
{"x": "encrypted", "y": "encrypted"},
[(-2, 4)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<int2> ∈ [-2, -2]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ lhs is signed
%1 = y # EncryptedScalar<uint3> ∈ [4, 4]
%2 = bitwise_and(%0, %1) # EncryptedScalar<uint3> ∈ [4, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only unsigned-unsigned bitwise operations are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x & y,
{"x": "encrypted", "y": "encrypted"},
[(4, -2)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<uint3> ∈ [4, 4]
%1 = y # EncryptedScalar<int2> ∈ [-2, -2]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ rhs is signed
%2 = bitwise_and(%0, %1) # EncryptedScalar<uint3> ∈ [4, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only unsigned-unsigned bitwise operations are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: np.concatenate((x, y)),
{"x": "clear", "y": "clear"},
[([1, 2], [3, 4])],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint2, shape=(2,)> ∈ [1, 2]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ value is clear
%1 = y # ClearTensor<uint3, shape=(2,)> ∈ [3, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ value is clear
%2 = concatenate((%0, %1)) # ClearTensor<uint3, shape=(4,)> ∈ [1, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear concatenation is not supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x: fhe.conv(x, [[[[2, 1], [0, 3]]]]),
{"x": "clear"},
[np.ones(shape=(1, 1, 10, 10), dtype=np.int64)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint1, shape=(1, 1, 10, 10)> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ operand is clear
%1 = [[[[2 1] [0 3]]]] # ClearTensor<uint2, shape=(1, 1, 2, 2)> ∈ [0, 3]
%2 = conv2d(%0, %1, [0], pads=(0, 0, 0, 0), strides=(1, 1), dilations=(1, 1), group=1) # EncryptedTensor<uint3, shape=(1, 1, 9, 9)> ∈ [6, 6]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear convolutions are not supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: fhe.conv(x, weight=y),
{"x": "encrypted", "y": "encrypted"},
[
(
np.ones(shape=(1, 1, 10, 10), dtype=np.int64),
np.ones(shape=(1, 1, 2, 2), dtype=np.int64),
)
],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint1, shape=(1, 1, 10, 10)> ∈ [1, 1]
%1 = y # EncryptedTensor<uint1, shape=(1, 1, 2, 2)> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ weight is encrypted
%2 = conv2d(%0, %1, [0], pads=(0, 0, 0, 0), strides=(1, 1), dilations=(1, 1), group=1) # EncryptedTensor<uint3, shape=(1, 1, 9, 9)> ∈ [4, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but convolutions with encrypted weights are not supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: fhe.conv(x, weight=[[[[2, 1], [0, 3]]]], bias=y),
{"x": "encrypted", "y": "encrypted"},
[
(
np.ones(shape=(1, 1, 10, 10), dtype=np.int64),
np.ones(shape=(1,), dtype=np.int64),
)
],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint1, shape=(1, 1, 10, 10)> ∈ [1, 1]
%1 = y # EncryptedTensor<uint1, shape=(1,)> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ bias is encrypted
%2 = [[[[2 1] [0 3]]]] # ClearTensor<uint2, shape=(1, 1, 2, 2)> ∈ [0, 3]
%3 = conv2d(%0, %2, %1, pads=(0, 0, 0, 0), strides=(1, 1), dilations=(1, 1), group=1) # EncryptedTensor<uint3, shape=(1, 1, 9, 9)> ∈ [7, 7]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but convolutions with encrypted biases are not supported
return %3
""", # noqa: E501
),
pytest.param(
lambda x, y: x @ y,
{"x": "clear", "y": "clear"},
[([[1, 2], [3, 4]], [[4, 3], [2, 1]])],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint3, shape=(2, 2)> ∈ [1, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ lhs is clear
%1 = y # ClearTensor<uint3, shape=(2, 2)> ∈ [1, 4]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ rhs is clear
%2 = matmul(%0, %1) # ClearTensor<uint5, shape=(2, 2)> ∈ [5, 20]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear-clear matrix multiplications are not supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x: fhe.maxpool(x, kernel_shape=(3, 2)),
{"x": "clear"},
[np.ones(shape=(1, 1, 10, 5), dtype=np.int64)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint1, shape=(1, 1, 10, 5)> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ operand is clear
%1 = maxpool2d(%0, kernel_shape=(3, 2), strides=(1, 1), pads=(0, 0, 0, 0), dilations=(1, 1), ceil_mode=False) # ClearTensor<uint1, shape=(1, 1, 8, 4)> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear maxpooling is not supported
return %1
""", # noqa: E501
),
pytest.param(
lambda x: x**2,
{"x": "clear"},
[3, 4, 5],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearScalar<uint3> ∈ [3, 5]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this clear value is used as an input to a table lookup
%1 = 2 # ClearScalar<uint2> ∈ [2, 2]
%2 = power(%0, %1) # ClearScalar<uint5> ∈ [9, 25]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only encrypted table lookups are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x: np.sum(x),
{"x": "clear"},
[[1, 2]],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint2, shape=(2,)> ∈ [1, 2]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ operand is clear
%1 = sum(%0) # ClearScalar<uint2> ∈ [3, 3]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear summation is not supported
return %1
""", # noqa: E501
),
pytest.param(
lambda x, y: x << y,
{"x": "encrypted", "y": "encrypted"},
[(-2, 4)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<int2> ∈ [-2, -2]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ lhs is signed
%1 = y # EncryptedScalar<uint3> ∈ [4, 4]
%2 = left_shift(%0, %1) # EncryptedScalar<int6> ∈ [-32, -32]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only unsigned-unsigned bitwise shifts are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x >> y,
{"x": "encrypted", "y": "encrypted"},
[(4, -2)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<uint3> ∈ [4, 4]
%1 = y # EncryptedScalar<int2> ∈ [-2, -2]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ rhs is signed
%2 = right_shift(%0, %1) # EncryptedScalar<uint1> ∈ [0, 0]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only unsigned-unsigned bitwise shifts are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x: -x,
{"x": "clear"},
[10],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearScalar<uint4> ∈ [10, 10]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ operand is clear
%1 = negative(%0) # ClearScalar<int5> ∈ [-10, -10]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear negations are not supported
return %1
""", # noqa: E501
),
pytest.param(
lambda x: fhe.LookupTable([fhe.LookupTable([0, 1]), fhe.LookupTable([1, 0])])[x],
{"x": "clear"},
[[1, 1], [1, 0], [0, 1], [0, 0]],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearTensor<uint1, shape=(2,)> ∈ [0, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this clear value is used as an input to a table lookup
%1 = tlu(%0, table=[[0, 1] [1, 0]]) # ClearTensor<uint1, shape=(2,)> ∈ [0, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only encrypted table lookups are supported
return %1
""", # noqa: E501
),
pytest.param(
lambda x: fhe.round_bit_pattern(x, lsbs_to_remove=2),
{"x": "clear"},
[10, 20, 30],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # ClearScalar<uint5> ∈ [10, 30]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ operand is clear
%1 = round_bit_pattern(%0, lsbs_to_remove=2) # ClearScalar<uint6> ∈ [12, 32]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but clear round bit pattern is not supported
%2 = identity(%1) # ClearScalar<uint6>
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x | y,
{"x": "encrypted", "y": "encrypted"},
[(100_000, 300_000)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<uint17> ∈ [100000, 100000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 19-bit value is used as an operand to a bitwise operation
(note that it's assigned 19-bits during compilation because of its relation with other operations)
%1 = y # EncryptedScalar<uint19> ∈ [300000, 300000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 19-bit value is used as an operand to a bitwise operation
%2 = bitwise_or(%0, %1) # EncryptedScalar<uint19> ∈ [366560, 366560]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit bitwise operations are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x != y,
{"x": "encrypted", "y": "encrypted"},
[(300_000, 100_000)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<uint19> ∈ [300000, 300000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 19-bit value is used as an operand to a comparison operation
%1 = y # EncryptedScalar<uint17> ∈ [100000, 100000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 19-bit value is used as an operand to a comparison operation
(note that it's assigned 19-bits during compilation because of its relation with other operations)
%2 = not_equal(%0, %1) # EncryptedScalar<uint1> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit comparison operations are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x >= y,
{"x": "encrypted", "y": "encrypted"},
[(300_000, 100_000)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<uint19> ∈ [300000, 300000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 19-bit value is used as an operand to a comparison operation
%1 = y # EncryptedScalar<uint17> ∈ [100000, 100000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 19-bit value is used as an operand to a comparison operation
(note that it's assigned 19-bits during compilation because of its relation with other operations)
%2 = greater_equal(%0, %1) # EncryptedScalar<uint1> ∈ [1, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit comparison operations are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x << y,
{"x": "encrypted", "y": "encrypted"},
[(100_000, 20)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<uint17> ∈ [100000, 100000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 37-bit value is used as the operand of a shift operation
(note that it's assigned 37-bits during compilation because of its relation with other operations)
%1 = y # EncryptedScalar<uint5> ∈ [20, 20]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 5-bit value is used as the shift amount of a shift operation
%2 = left_shift(%0, %1) # EncryptedScalar<uint37> ∈ [104857600000, 104857600000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 4-bit shift operations on up to 16-bit operands are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x * y,
{"x": "encrypted", "y": "encrypted"},
[(100_000, 20)],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedScalar<uint17> ∈ [100000, 100000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 21-bit value is used as an operand to an encrypted multiplication
(note that it's assigned 21-bits during compilation because of its relation with other operations)
%1 = y # EncryptedScalar<uint5> ∈ [20, 20]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 21-bit value is used as an operand to an encrypted multiplication
(note that it's assigned 21-bits during compilation because of its relation with other operations)
%2 = multiply(%0, %1) # EncryptedScalar<uint21> ∈ [2000000, 2000000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit encrypted multiplications are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: np.dot(x, y),
{"x": "encrypted", "y": "encrypted"},
[
(
[100_000, 200_000],
[200_000, 100_000],
)
],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint18, shape=(2,)> ∈ [100000, 200000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 36-bit value is used as an operand to an encrypted dot products
(note that it's assigned 36-bits during compilation because of its relation with other operations)
%1 = y # EncryptedTensor<uint18, shape=(2,)> ∈ [100000, 200000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 36-bit value is used as an operand to an encrypted dot products
(note that it's assigned 36-bits during compilation because of its relation with other operations)
%2 = dot(%0, %1) # EncryptedScalar<uint36> ∈ [40000000000, 40000000000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit encrypted dot products are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x @ y,
{"x": "encrypted", "y": "encrypted"},
[
(
[
[100_000, 200_000],
[200_000, 100_000],
],
[
[100_000, 200_000],
[200_000, 100_000],
],
)
],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint18, shape=(2, 2)> ∈ [100000, 200000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 36-bit value is used as an operand to an encrypted matrix multiplication
(note that it's assigned 36-bits during compilation because of its relation with other operations)
%1 = y # EncryptedTensor<uint18, shape=(2, 2)> ∈ [100000, 200000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 36-bit value is used as an operand to an encrypted matrix multiplication
(note that it's assigned 36-bits during compilation because of its relation with other operations)
%2 = matmul(%0, %1) # EncryptedTensor<uint36, shape=(2, 2)> ∈ [40000000000, 50000000000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit encrypted matrix multiplications are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: np.dot(x, y),
{"x": "encrypted", "y": "encrypted"},
[
(
[50_000, 0],
[1, 10_000],
)
],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint16, shape=(2,)> ∈ [0, 50000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 17-bit value is used as an operand to an encrypted dot products
(note that it's assigned 17-bits during compilation because of its relation with other operations)
%1 = y # EncryptedTensor<uint14, shape=(2,)> ∈ [1, 10000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 17-bit value is used as an operand to an encrypted dot products
(note that it's assigned 17-bits during compilation because of its relation with other operations)
%2 = dot(%0, %1) # EncryptedScalar<uint16> ∈ [50000, 50000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit encrypted dot products are supported
return %2
""", # noqa: E501
),
pytest.param(
lambda x, y: x @ y,
{"x": "encrypted", "y": "encrypted"},
[
(
[
[50_000, 3],
[3, 10_000],
],
[
[1, 0],
[0, 1],
],
)
],
RuntimeError,
"""
Function you are trying to compile cannot be compiled
%0 = x # EncryptedTensor<uint16, shape=(2, 2)> ∈ [3, 50000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 17-bit value is used as an operand to an encrypted matrix multiplication
(note that it's assigned 17-bits during compilation because of its relation with other operations)
%1 = y # EncryptedTensor<uint1, shape=(2, 2)> ∈ [0, 1]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this 17-bit value is used as an operand to an encrypted matrix multiplication
(note that it's assigned 17-bits during compilation because of its relation with other operations)
%2 = matmul(%0, %1) # EncryptedTensor<uint16, shape=(2, 2)> ∈ [3, 50000]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ but only up to 16-bit encrypted matrix multiplications are supported
return %2
""", # noqa: E501
),
],
)
def test_converter_bad_convert(
function,
encryption_statuses,
inputset,
expected_error,
expected_message,
helpers,
):
"""
Test unsupported graph conversion.
"""
configuration = helpers.configuration()
compiler = fhe.Compiler(function, encryption_statuses)
with pytest.raises(expected_error) as excinfo:
compiler.compile(inputset, configuration)
helpers.check_str(expected_message, str(excinfo.value))
@pytest.mark.parametrize(
"function,parameters,expected_graph",
[
pytest.param(
lambda x: (x**2) + 100,
{
"x": {"range": [0, 10], "status": "encrypted"},
},
"""
%0 = x # EncryptedScalar<uint4> ∈ [0, 10]
%1 = 2 # ClearScalar<uint5> ∈ [2, 2]
%2 = power(%0, %1) # EncryptedScalar<uint8> ∈ [0, 100]
%3 = 100 # ClearScalar<uint9> ∈ [100, 100]
%4 = add(%2, %3) # EncryptedScalar<uint8> ∈ [100, 200]
return %4
""",
)
],
)
def test_converter_process_multi_precision(function, parameters, expected_graph, helpers):
"""
Test `process` method of `Converter` with multi precision.
"""
parameter_encryption_statuses = helpers.generate_encryption_statuses(parameters)
configuration = helpers.configuration().fork(single_precision=False)
compiler = fhe.Compiler(function, parameter_encryption_statuses)
inputset = helpers.generate_inputset(parameters)
graph = compiler.trace(inputset, configuration)
processed_graph = GraphConverter().process(graph, configuration)
for node in processed_graph.query_nodes():
if "original_bit_width" in node.properties:
del node.properties["original_bit_width"]
helpers.check_str(expected_graph, processed_graph.format())
@pytest.mark.parametrize(
"function,parameters,expected_graph",
[
pytest.param(
lambda x: (x**2) + 100,
{
"x": {"range": [0, 10], "status": "encrypted"},
},
"""
%0 = x # EncryptedScalar<uint8> ∈ [0, 10]
%1 = 2 # ClearScalar<uint9> ∈ [2, 2]
%2 = power(%0, %1) # EncryptedScalar<uint8> ∈ [0, 100]
%3 = 100 # ClearScalar<uint9> ∈ [100, 100]
%4 = add(%2, %3) # EncryptedScalar<uint8> ∈ [100, 200]
return %4
""",
)
],
)
def test_converter_process_single_precision(function, parameters, expected_graph, helpers):
"""
Test `process` method of `Converter` with single precision.
"""
parameter_encryption_statuses = helpers.generate_encryption_statuses(parameters)
configuration = helpers.configuration().fork(single_precision=True)
compiler = fhe.Compiler(function, parameter_encryption_statuses)
inputset = helpers.generate_inputset(parameters)
graph = compiler.trace(inputset, configuration)
processed_graph = GraphConverter().process(graph, configuration)
for node in processed_graph.query_nodes():
if "original_bit_width" in node.properties:
del node.properties["original_bit_width"]
helpers.check_str(expected_graph, processed_graph.format())