Files
concrete/compilers/concrete-compiler/compiler/tests/python/test_compilation.py

428 lines
16 KiB
Python

import pytest
import os.path
import shutil
import numpy as np
from concrete.compiler import (
JITSupport,
LibrarySupport,
ClientSupport,
CompilationOptions,
CompilationFeedback,
)
def assert_result(result, expected_result):
"""Assert that result and expected result are equal.
result and expected_result can be integers on numpy arrays.
"""
assert type(expected_result) == type(result)
if isinstance(expected_result, int):
assert result == expected_result
else:
assert np.all(result == expected_result)
def run(engine, args, compilation_result, keyset_cache):
"""Execute engine on the given arguments.
Perform required loading, encryption, execution, and decryption."""
# Dev
compilation_feedback = engine.load_compilation_feedback(compilation_result)
assert isinstance(compilation_feedback, CompilationFeedback)
assert isinstance(compilation_feedback.complexity, float)
assert isinstance(compilation_feedback.p_error, float)
assert isinstance(compilation_feedback.global_p_error, float)
assert isinstance(compilation_feedback.total_secret_keys_size, int)
assert isinstance(compilation_feedback.total_bootstrap_keys_size, int)
assert isinstance(compilation_feedback.total_inputs_size, int)
assert isinstance(compilation_feedback.total_output_size, int)
# Client
client_parameters = engine.load_client_parameters(compilation_result)
key_set = ClientSupport.key_set(client_parameters, keyset_cache)
public_arguments = ClientSupport.encrypt_arguments(client_parameters, key_set, args)
# Server
server_lambda = engine.load_server_lambda(compilation_result)
evaluation_keys = key_set.get_evaluation_keys()
public_result = engine.server_call(server_lambda, public_arguments, evaluation_keys)
# Client
result = ClientSupport.decrypt_result(client_parameters, key_set, public_result)
return result
def compile_run_assert(
engine,
mlir_input,
args,
expected_result,
keyset_cache,
options=CompilationOptions.new("main"),
):
"""Compile run and assert result.
Can take both JITSupport or LibrarySupport as engine.
"""
compilation_result = engine.compile(mlir_input, options)
result = run(engine, args, compilation_result, keyset_cache)
assert_result(result, expected_result)
end_to_end_fixture = [
pytest.param(
"""
func.func @main(%arg0: !FHE.eint<7>, %arg1: i8) -> !FHE.eint<7> {
%1 = "FHE.add_eint_int"(%arg0, %arg1): (!FHE.eint<7>, i8) -> (!FHE.eint<7>)
return %1: !FHE.eint<7>
}
""",
(5, 7),
12,
id="add_eint_int",
),
pytest.param(
"""
func.func @main(%arg0: !FHE.eint<7>, %arg1: i8) -> !FHE.eint<7> {
%1 = "FHE.add_eint_int"(%arg0, %arg1): (!FHE.eint<7>, i8) -> (!FHE.eint<7>)
return %1: !FHE.eint<7>
}
""",
(np.array(4, dtype=np.uint8), np.array(5, dtype=np.uint8)),
9,
id="add_eint_int_with_ndarray_as_scalar",
),
pytest.param(
"""
func.func @main(%arg0: !FHE.eint<7>) -> !FHE.eint<7> {
%tlu = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]> : tensor<128xi64>
%1 = "FHE.apply_lookup_table"(%arg0, %tlu): (!FHE.eint<7>, tensor<128xi64>) -> (!FHE.eint<7>)
return %1: !FHE.eint<7>
}
""",
(73,),
73,
id="apply_lookup_table",
),
pytest.param(
"""
func.func @main(%arg0: tensor<4x!FHE.eint<7>>, %arg1: tensor<4xi8>) -> !FHE.eint<7>
{
%ret = "FHELinalg.dot_eint_int"(%arg0, %arg1) :
(tensor<4x!FHE.eint<7>>, tensor<4xi8>) -> !FHE.eint<7>
return %ret : !FHE.eint<7>
}
""",
(
np.array([1, 2, 3, 4], dtype=np.uint8),
np.array([4, 3, 2, 1], dtype=np.uint8),
),
20,
id="dot_eint_int_uint8",
),
pytest.param(
"""
func.func @main(%a0: tensor<4x!FHE.eint<6>>, %a1: tensor<4xi7>) -> tensor<4x!FHE.eint<6>> {
%res = "FHELinalg.add_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<6>>, tensor<4xi7>) -> tensor<4x!FHE.eint<6>>
return %res : tensor<4x!FHE.eint<6>>
}
""",
(
np.array([31, 6, 12, 9], dtype=np.uint8),
np.array([32, 9, 2, 3], dtype=np.uint8),
),
np.array([63, 15, 14, 12]),
id="add_eint_int_1D",
),
pytest.param(
"""
func.func @main(%arg0: !FHE.esint<7>) -> !FHE.esint<7> {
%0 = "FHE.neg_eint"(%arg0): (!FHE.esint<7>) -> !FHE.esint<7>
return %0: !FHE.esint<7>
}
""",
(5,),
-5,
id="neg_eint_signed",
),
pytest.param(
"""
func.func @main(%arg0: tensor<2x!FHE.esint<7>>) -> tensor<2x!FHE.esint<7>> {
%0 = "FHELinalg.neg_eint"(%arg0): (tensor<2x!FHE.esint<7>>) -> tensor<2x!FHE.esint<7>>
return %0: tensor<2x!FHE.esint<7>>
}
""",
(np.array([-5, 3]),),
np.array([5, -3]),
id="neg_eint_signed_2",
),
]
end_to_end_parallel_fixture = [
pytest.param(
"""
func.func @main(%x: tensor<3x4x!FHE.eint<7>>, %y: tensor<3x4x!FHE.eint<7>>) -> tensor<3x2x!FHE.eint<7>> {
%c = arith.constant dense<[[1, 2], [3, 4], [5, 0], [1, 2]]> : tensor<4x2xi8>
%0 = "FHELinalg.matmul_eint_int"(%x, %c): (tensor<3x4x!FHE.eint<7>>, tensor<4x2xi8>) -> tensor<3x2x!FHE.eint<7>>
%1 = "FHELinalg.matmul_eint_int"(%y, %c): (tensor<3x4x!FHE.eint<7>>, tensor<4x2xi8>) -> tensor<3x2x!FHE.eint<7>>
%2 = "FHELinalg.add_eint"(%0, %1): (tensor<3x2x!FHE.eint<7>>, tensor<3x2x!FHE.eint<7>>) -> tensor<3x2x!FHE.eint<7>>
return %2 : tensor<3x2x!FHE.eint<7>>
}
""",
(
np.array([[1, 2, 3, 4], [4, 2, 1, 0], [2, 3, 1, 5]], dtype=np.uint8),
np.array([[1, 2, 3, 4], [4, 2, 1, 1], [2, 3, 1, 5]], dtype=np.uint8),
),
np.array([[52, 36], [31, 34], [42, 52]]),
id="matmul_eint_int_uint8",
),
pytest.param(
"""
func.func @main(%a0: tensor<4x!FHE.eint<6>>, %a1: tensor<4xi7>, %a2: tensor<4x!FHE.eint<6>>, %a3: tensor<4xi7>) -> tensor<4x!FHE.eint<6>> {
%1 = "FHELinalg.add_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<6>>, tensor<4xi7>) -> tensor<4x!FHE.eint<6>>
%2 = "FHELinalg.add_eint_int"(%a2, %a3) : (tensor<4x!FHE.eint<6>>, tensor<4xi7>) -> tensor<4x!FHE.eint<6>>
%res = "FHELinalg.add_eint"(%1, %2) : (tensor<4x!FHE.eint<6>>, tensor<4x!FHE.eint<6>>) -> tensor<4x!FHE.eint<6>>
return %res : tensor<4x!FHE.eint<6>>
}
""",
(
np.array([1, 2, 3, 4], dtype=np.uint8),
np.array([9, 8, 6, 5], dtype=np.uint8),
np.array([3, 2, 7, 0], dtype=np.uint8),
np.array([1, 4, 2, 11], dtype=np.uint8),
),
np.array([14, 16, 18, 20]),
id="add_eint_int_1D",
),
]
@pytest.mark.parametrize("mlir_input, args, expected_result", end_to_end_fixture)
def test_jit_compile_and_run(mlir_input, args, expected_result, keyset_cache):
engine = JITSupport.new()
compile_run_assert(engine, mlir_input, args, expected_result, keyset_cache)
@pytest.mark.parametrize("mlir_input, args, expected_result", end_to_end_fixture)
def test_lib_compile_and_run(mlir_input, args, expected_result, keyset_cache):
artifact_dir = "./py_test_lib_compile_and_run"
engine = LibrarySupport.new(artifact_dir)
compile_run_assert(engine, mlir_input, args, expected_result, keyset_cache)
shutil.rmtree(artifact_dir)
@pytest.mark.parametrize("mlir_input, args, expected_result", end_to_end_fixture)
def test_lib_compile_reload_and_run(mlir_input, args, expected_result, keyset_cache):
artifact_dir = "./test_lib_compile_reload_and_run"
engine = LibrarySupport.new(artifact_dir)
# Here don't save compilation result, reload
engine.compile(mlir_input)
compilation_result = engine.reload()
result = run(engine, args, compilation_result, keyset_cache)
# Check result
assert_result(result, expected_result)
shutil.rmtree(artifact_dir)
def test_lib_compilation_artifacts():
mlir_str = """
func.func @main(%a0: tensor<4x!FHE.eint<6>>, %a1: tensor<4xi7>) -> tensor<4x!FHE.eint<6>> {
%res = "FHELinalg.add_eint_int"(%a0, %a1) : (tensor<4x!FHE.eint<6>>, tensor<4xi7>) -> tensor<4x!FHE.eint<6>>
return %res : tensor<4x!FHE.eint<6>>
}
"""
artifact_dir = "./test_artifacts"
engine = LibrarySupport.new(artifact_dir)
engine.compile(mlir_str)
assert os.path.exists(engine.get_client_parameters_path())
assert os.path.exists(engine.get_shared_lib_path())
shutil.rmtree(artifact_dir)
assert not os.path.exists(engine.get_client_parameters_path())
assert not os.path.exists(engine.get_shared_lib_path())
def _test_lib_compile_and_run_with_options(keyset_cache, options):
mlir_input = """
func.func @main(%arg0: !FHE.eint<7>) -> !FHE.eint<7> {
%tlu = arith.constant dense<[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127]> : tensor<128xi64>
%1 = "FHE.apply_lookup_table"(%arg0, %tlu): (!FHE.eint<7>, tensor<128xi64>) -> (!FHE.eint<7>)
return %1: !FHE.eint<7>
}
"""
args = (73,)
expected_result = 73
engine = LibrarySupport.new("./py_test_lib_compile_and_run_custom_perror")
compile_run_assert(engine, mlir_input, args, expected_result, keyset_cache, options)
def test_lib_compile_and_run_p_error(keyset_cache):
options = CompilationOptions.new("main")
options.set_p_error(0.00001)
options.set_display_optimizer_choice(True)
_test_lib_compile_and_run_with_options(keyset_cache, options)
def test_lib_compile_and_run_global_p_error(keyset_cache):
options = CompilationOptions.new("main")
options.set_global_p_error(0.00001)
options.set_display_optimizer_choice(True)
_test_lib_compile_and_run_with_options(keyset_cache, options)
def test_lib_compile_and_run_security_level(keyset_cache):
options = CompilationOptions.new("main")
options.set_security_level(80)
options.set_display_optimizer_choice(True)
_test_lib_compile_and_run_with_options(keyset_cache, options)
@pytest.mark.parallel
@pytest.mark.parametrize(
"mlir_input, args, expected_result", end_to_end_parallel_fixture
)
@pytest.mark.parametrize(
"EngineClass",
[
pytest.param(JITSupport, id="JIT"),
pytest.param(LibrarySupport, id="Library"),
],
)
def test_compile_and_run_auto_parallelize(
mlir_input, args, expected_result, keyset_cache, EngineClass
):
engine = EngineClass.new()
options = CompilationOptions.new("main")
options.set_auto_parallelize(True)
compile_run_assert(
engine, mlir_input, args, expected_result, keyset_cache, options=options
)
@pytest.mark.parametrize(
"mlir_input, args, expected_result", end_to_end_parallel_fixture
)
def test_compile_dataflow_and_fail_run(
mlir_input, args, expected_result, keyset_cache, no_parallel
):
if no_parallel:
engine = JITSupport.new()
options = CompilationOptions.new("main")
options.set_auto_parallelize(True)
with pytest.raises(
RuntimeError,
match="call: current runtime doesn't support dataflow execution",
):
compile_run_assert(
engine, mlir_input, args, expected_result, keyset_cache, options=options
)
@pytest.mark.parametrize(
"mlir_input, args, expected_result",
[
pytest.param(
"""
func.func @main(%x: tensor<3x4x!FHE.eint<7>>) -> tensor<3x2x!FHE.eint<7>> {
%y = arith.constant dense<[[1, 2], [3, 4], [5, 0], [1, 2]]> : tensor<4x2xi8>
%0 = "FHELinalg.matmul_eint_int"(%x, %y): (tensor<3x4x!FHE.eint<7>>, tensor<4x2xi8>) -> tensor<3x2x!FHE.eint<7>>
return %0 : tensor<3x2x!FHE.eint<7>>
}
""",
(np.array([[1, 2, 3, 4], [4, 2, 1, 0], [2, 3, 1, 5]], dtype=np.uint8),),
np.array([[26, 18], [15, 16], [21, 26]]),
id="matmul_eint_int_uint8",
),
],
)
@pytest.mark.parametrize(
"EngineClass",
[
pytest.param(JITSupport, id="JIT"),
pytest.param(LibrarySupport, id="Library"),
],
)
def test_compile_and_run_loop_parallelize(
mlir_input, args, expected_result, keyset_cache, EngineClass
):
engine = EngineClass.new()
options = CompilationOptions.new("main")
options.set_loop_parallelize(True)
compile_run_assert(
engine, mlir_input, args, expected_result, keyset_cache, options=options
)
@pytest.mark.parametrize(
"mlir_input, args",
[
pytest.param(
"""
func.func @main(%arg0: !FHE.eint<7>, %arg1: i8) -> !FHE.eint<7> {
%1 = "FHE.add_eint_int"(%arg0, %arg1): (!FHE.eint<7>, i8) -> (!FHE.eint<7>)
return %1: !FHE.eint<7>
}
""",
(5, 7, 8),
id="add_eint_int_invalid_arg_number",
),
],
)
@pytest.mark.parametrize(
"EngineClass",
[
pytest.param(JITSupport, id="JIT"),
pytest.param(LibrarySupport, id="Library"),
],
)
def test_compile_and_run_invalid_arg_number(
mlir_input, args, EngineClass, keyset_cache
):
engine = EngineClass.new()
with pytest.raises(
RuntimeError, match=r"function has arity 2 but is applied to too many arguments"
):
compile_run_assert(engine, mlir_input, args, None, keyset_cache)
@pytest.mark.parametrize(
"mlir_input",
[
pytest.param(
"""
func.func @test(%arg0: tensor<4x!FHE.eint<7>>, %arg1: tensor<4xi8>) -> !FHE.eint<7>
{
%ret = "FHELinalg.dot_eint_int"(%arg0, %arg1) :
(tensor<4x!FHE.eint<7>>, tensor<4xi8>) -> !FHE.eint<7>
return %ret : !FHE.eint<7>
}
""",
id="not @main",
),
],
)
def test_compile_invalid(mlir_input):
engine = JITSupport.new()
with pytest.raises(
RuntimeError, match=r"Could not find existing crypto parameters for"
):
engine.compile(mlir_input)
def test_crt_decomposition_feedback():
mlir = """
func.func @main(%arg0: !FHE.eint<16>) -> !FHE.eint<16> {
%tlu = arith.constant dense<60000> : tensor<65536xi64>
%1 = "FHE.apply_lookup_table"(%arg0, %tlu): (!FHE.eint<16>, tensor<65536xi64>) -> (!FHE.eint<16>)
return %1: !FHE.eint<16>
}
"""
engine = JITSupport.new()
compilation_result = engine.compile(mlir, options=CompilationOptions.new("main"))
compilation_feedback = engine.load_compilation_feedback(compilation_result)
assert isinstance(compilation_feedback, CompilationFeedback)
assert compilation_feedback.crt_decompositions_of_outputs == [[7, 8, 9, 11, 13]]