Files
concrete/compiler/lib/Dialect/FHE/Transforms/EncryptedMulToDoubleTLU.cpp

179 lines
6.5 KiB
C++

// Part of the Concrete Compiler Project, under the BSD3 License with Zama
// Exceptions. See
// https://github.com/zama-ai/concrete-compiler-internal/blob/main/LICENSE.txt
// for license information.
#include <concretelang/Dialect/FHE/Analysis/utils.h>
#include <concretelang/Dialect/FHE/IR/FHEOps.h>
#include <concretelang/Dialect/FHE/Transforms/EncryptedMulToDoubleTLU.h>
#include <concretelang/Support/Constants.h>
#include <mlir/Dialect/Arithmetic/IR/Arithmetic.h>
#include <mlir/Dialect/Func/IR/FuncOps.h>
#include <mlir/Dialect/Linalg/IR/Linalg.h>
#include <mlir/IR/PatternMatch.h>
#include <mlir/Support/LLVM.h>
#include <mlir/Transforms/DialectConversion.h>
#include <unordered_set>
using namespace mlir::concretelang::FHE;
namespace mlir {
namespace concretelang {
namespace {
class EncryptedMulOpPattern : public mlir::OpConversionPattern<FHE::MulEintOp> {
public:
EncryptedMulOpPattern(mlir::MLIRContext *context)
: mlir::OpConversionPattern<FHE::MulEintOp>(
context, ::mlir::concretelang::DEFAULT_PATTERN_BENEFIT) {}
mlir::LogicalResult
matchAndRewrite(FHE::MulEintOp op, FHE::MulEintOp::Adaptor adaptor,
mlir::ConversionPatternRewriter &rewriter) const override {
auto inputType = adaptor.a().getType();
auto bitWidth = inputType.cast<FHE::FheIntegerInterface>().getWidth();
auto isSigned = inputType.cast<FHE::FheIntegerInterface>().isSigned();
mlir::Type signedType =
FHE::EncryptedSignedIntegerType::get(op->getContext(), bitWidth);
// Note:
// -----
//
// The signedness of a value is only important:
// + when used as function input / output, because it changes the
// encoding/decoding used.
// + when used as tlu input, because it changes the encoding of the lut.
//
// Otherwise, for the leveled operations, the semantics are compatible. We
// just have to please the verifier that usually requires the same
// signedness for inputs and outputs.
// s = a + b
mlir::Value sum =
rewriter.create<FHE::AddEintOp>(op->getLoc(), adaptor.a(), adaptor.b());
// se = (s)^2/4
// Depending on whether a,b,s are signed or not, we need a different lut to
// compute (.)^2/4.
mlir::SmallVector<uint64_t> rawSumLut;
if (isSigned) {
rawSumLut = generateSignedLut(bitWidth);
} else {
rawSumLut = generateUnsignedLut(bitWidth);
}
mlir::Value sumLut = rewriter.create<mlir::arith::ConstantOp>(
op->getLoc(), mlir::DenseIntElementsAttr::get(
mlir::RankedTensorType::get(
rawSumLut.size(), rewriter.getIntegerType(64)),
rawSumLut));
mlir::Value sumTluOutput = rewriter.create<FHE::ApplyLookupTableEintOp>(
op->getLoc(), inputType, sum, sumLut);
// d = a - b
mlir::Value diff =
rewriter.create<FHE::SubEintOp>(op->getLoc(), adaptor.a(), adaptor.b());
// de = (d)^2/4
// Here, the tlu must be performed with signed encoded lut, to properly
// bootstrap negative values that may arise in the computation of d. If the
// inputs are not signed, we cast the output to a signed encrypted integer.
mlir::Value diffO;
if (isSigned) {
diffO = diff;
} else {
diff = rewriter.create<FHE::ToSignedOp>(op->getLoc(), signedType, diff);
}
mlir::SmallVector<uint64_t> rawDiffLut = generateSignedLut(bitWidth);
mlir::Value diffLut = rewriter.create<mlir::arith::ConstantOp>(
op->getLoc(), mlir::DenseIntElementsAttr::get(
mlir::RankedTensorType::get(
rawDiffLut.size(), rewriter.getIntegerType(64)),
rawDiffLut));
mlir::Value diffTluOutput = rewriter.create<FHE::ApplyLookupTableEintOp>(
op->getLoc(), inputType, diff, diffLut);
// o = se - de
mlir::Value output = rewriter.create<FHE::SubEintOp>(
op->getLoc(), inputType, sumTluOutput, diffTluOutput);
rewriter.replaceOp(op, {output});
return mlir::success();
}
private:
static mlir::SmallVector<uint64_t> generateUnsignedLut(unsigned bitWidth) {
mlir::SmallVector<uint64_t> rawLut;
uint64_t lutLen = 1 << bitWidth;
for (uint64_t i = 0; i < lutLen; ++i) {
rawLut.push_back((i * i) / 4);
}
return rawLut;
}
static mlir::SmallVector<uint64_t> generateSignedLut(unsigned bitWidth) {
mlir::SmallVector<uint64_t> rawLut;
uint64_t lutLen = 1 << bitWidth;
for (uint64_t i = 0; i < lutLen / 2; ++i) {
rawLut.push_back((i * i) / 4);
}
for (uint64_t i = lutLen / 2; i > 0; --i) {
rawLut.push_back((i * i) / 4);
}
return rawLut;
}
};
} // namespace
/// This pass rewrites an `FHE::MulEintOp` into a set of ops of the `FHE`
/// dialects.
///
/// It relies on the observation that `x*y` can be turned into `((x+y)^2)/4 -
/// ((x-y)^2)/4`, which uses operations already available in the `FHE` dialect:
/// + `x+y` can be computed with the leveled operation `add_eint`
/// + `x-y` can be computed with the leveled operation `sub_eint`
/// + `(a^2)/4` can be computed with a table lookup `apply_table_lookup`
///
/// Gotchas:
/// --------
///
/// + Since we use the leveled addition and subtraction, we have to increment
/// the bitwidth of the inputs to properly
/// encode the carry of the computation. This change in bitwidth must then be
/// propagated to the whole graph, both upstream and downstream.
/// + This graph-wide update may reach existing `apply_lookup_table` operations,
/// which in turn will necessitate an
/// update of the size of the lookup table.
class EncryptedMulToDoubleTLU
: public EncryptedMulToDoubleTLUBase<EncryptedMulToDoubleTLU> {
public:
void runOnOperation() override {
mlir::func::FuncOp funcOp = getOperation();
mlir::ConversionTarget target(getContext());
target.addLegalDialect<mlir::arith::ArithmeticDialect>();
target.addLegalDialect<FHE::FHEDialect>();
target.addIllegalOp<FHE::MulEintOp>();
mlir::RewritePatternSet patterns(funcOp->getContext());
patterns.add<EncryptedMulOpPattern>(funcOp->getContext());
if (mlir::applyPartialConversion(funcOp, target, std::move(patterns))
.failed()) {
funcOp->emitError("Failed to rewrite FHE mul_eint operation.");
this->signalPassFailure();
}
}
};
std::unique_ptr<::mlir::OperationPass<::mlir::func::FuncOp>>
createEncryptedMulToDoubleTLUPass() {
return std::make_unique<EncryptedMulToDoubleTLU>();
}
} // namespace concretelang
} // namespace mlir