Files
concrete/tests/common/optimization/test_float_fusing.py
Arthur Meyre ff03bc2220 feat(optimization): support more fusing topologies
- corrected docstring that was mistaken on what was returned
- updated pyproject.toml to ignore warnings that happened naturally in
networkx and that was blocking proper test execution (no way around that
this is code from networkx that triggered the warning)
- add a test case for the newly supported fusing topology

closes #499
2021-11-18 09:08:50 +01:00

715 lines
25 KiB
Python

"""Test file for float subgraph fusing"""
import random
from inspect import signature
import numpy
import pytest
from concrete.common.data_types.integers import Integer
from concrete.common.debugging.custom_assert import assert_not_reached
from concrete.common.optimization.topological import fuse_float_operations
from concrete.common.values import EncryptedScalar, EncryptedTensor
from concrete.numpy import tracing
from concrete.numpy.tracing import trace_numpy_function
def no_fuse(x):
"""No fuse"""
return x + 2
def no_fuse_unhandled(x, y):
"""No fuse unhandled"""
x_1 = x + 0.7
y_1 = y + 1.3
intermediate = x_1 + y_1
return intermediate.astype(numpy.int32)
def fusable_with_bigger_search(x, y):
"""fusable with bigger search"""
x = x + 1
x_1 = x.astype(numpy.int32)
x_1 = x_1 + 1.5
x_2 = x.astype(numpy.int32)
x_2 = x_2 + 3.4
add = x_1 + x_2
add_int = add.astype(numpy.int32)
return add_int + y
def fusable_with_bigger_search_needs_second_iteration(x, y):
"""fusable with bigger search and triggers a second iteration in the fusing"""
x = x + 1
x = x + 0.5
x = numpy.cos(x)
x_1 = x.astype(numpy.int32)
x_1 = x_1 + 1.5
x_p = x + 1
x_p2 = x_p + 1
x_2 = (x_p + x_p2).astype(numpy.int32)
x_2 = x_2 + 3.4
add = x_1 + x_2
add_int = add.astype(numpy.int32)
return add_int + y
def no_fuse_big_constant_3_10_10(x):
"""Pass an array x with size < 100 to trigger a no fuse condition."""
x = x.astype(numpy.float64)
return (x + numpy.ones((3, 10, 10))).astype(numpy.int32)
def no_fuse_dot(x):
"""No fuse dot"""
return numpy.dot(x, numpy.full((10,), 1.33, dtype=numpy.float64)).astype(numpy.int32)
def simple_create_fuse_opportunity(f, x):
"""No fuse because the function is explicitely marked as unfusable in our code."""
return f(x.astype(numpy.float64)).astype(numpy.int32)
def ravel_cases(x):
"""Simple ravel cases"""
return simple_create_fuse_opportunity(numpy.ravel, x)
def transpose_cases(x):
"""Simple transpose cases"""
return simple_create_fuse_opportunity(numpy.transpose, x)
def reshape_cases(x, newshape):
"""Simple reshape cases"""
return simple_create_fuse_opportunity(lambda x: numpy.reshape(x, newshape), x)
def simple_fuse_not_output(x):
"""Simple fuse not output"""
intermediate = x.astype(numpy.float64)
intermediate = intermediate.astype(numpy.int32)
return intermediate + 2
def simple_fuse_output(x):
"""Simple fuse output"""
return x.astype(numpy.float64).astype(numpy.int32)
def mix_x_and_y_intricately_and_call_f(function, x, y):
"""Mix x and y in an intricated way, that can't be simplified by
an optimizer eg, and then call function
"""
intermediate = x + y
intermediate = intermediate + 2
intermediate = intermediate.astype(numpy.float32)
intermediate = intermediate.astype(numpy.int32)
x_p_1 = intermediate + 1.5
x_p_2 = intermediate + 2.7
x_p_3 = function(x_p_1 + x_p_2)
return (
x_p_3.astype(numpy.int32),
x_p_2.astype(numpy.int32),
(x_p_2 + 3).astype(numpy.int32),
x_p_3.astype(numpy.int32) + 67,
y,
(y + 4.7).astype(numpy.int32) + 3,
)
def mix_x_and_y_and_call_f(function, x, y):
"""Mix x and y and then call function"""
x_p_1 = x + 0.1
x_p_2 = x + 0.2
x_p_3 = function(x_p_1 + x_p_2)
return (
x_p_3.astype(numpy.int32),
x_p_2.astype(numpy.int32),
(x_p_2 + 3).astype(numpy.int32),
x_p_3.astype(numpy.int32) + 67,
y,
(y + 4.7).astype(numpy.int32) + 3,
)
def mix_x_and_y_into_range_0_to_1_and_call_f(function, x, y):
"""Mix x and y and then call function, in such a way that the input to function is between
0 and 1"""
x_p_1 = x + 0.1
x_p_2 = x + 0.2
x_p_4 = 1 - numpy.abs(numpy.sin(x_p_1 + x_p_2 + 0.3))
x_p_3 = function(x_p_4)
return (
x_p_3.astype(numpy.int32),
x_p_2.astype(numpy.int32),
(x_p_2 + 3).astype(numpy.int32),
x_p_3.astype(numpy.int32) + 67,
y,
(y + 4.7).astype(numpy.int32) + 3,
)
def mix_x_and_y_into_integer_and_call_f(function, x, y):
"""Mix x and y but keep the entry to function as an integer"""
x_p_1 = x + 1
x_p_2 = x + 2
x_p_3 = function(x_p_1 + x_p_2)
return (
x_p_3.astype(numpy.int32),
x_p_2.astype(numpy.int32),
(x_p_2 + 3).astype(numpy.int32),
x_p_3.astype(numpy.int32) + 67,
y,
(y + 4.7).astype(numpy.int32) + 3,
)
def get_func_params_int32(func, scalar=True):
"""Returns a dict with parameters as scalar int32"""
return {
param_name: EncryptedScalar(Integer(32, True))
if scalar
else EncryptedTensor(Integer(32, True), (1,))
for param_name in signature(func).parameters.keys()
}
@pytest.mark.parametrize(
"function_to_trace,fused,params,warning_message",
[
pytest.param(no_fuse, False, get_func_params_int32(no_fuse), "", id="no_fuse"),
pytest.param(
no_fuse_unhandled,
False,
get_func_params_int32(no_fuse_unhandled),
"""
The following subgraph is not fusable:
%0 = x # EncryptedScalar<int32>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ one of 2 variable inputs (can only have 1 for fusing)
%1 = 0.7 # ClearScalar<float64>
%2 = y # EncryptedScalar<int32>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ one of 2 variable inputs (can only have 1 for fusing)
%3 = 1.3 # ClearScalar<float64>
%4 = add(%0, %1) # EncryptedScalar<float64>
%5 = add(%2, %3) # EncryptedScalar<float64>
%6 = add(%4, %5) # EncryptedScalar<float64>
%7 = astype(%6, dtype=int32) # EncryptedScalar<int32>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ cannot fuse here as the subgraph has 2 variable inputs
return %7
""".strip(), # noqa: E501 # pylint: disable=line-too-long
id="no_fuse_unhandled",
),
pytest.param(
fusable_with_bigger_search,
True,
get_func_params_int32(fusable_with_bigger_search),
None,
id="fusable_with_bigger_search",
),
pytest.param(
fusable_with_bigger_search_needs_second_iteration,
True,
get_func_params_int32(fusable_with_bigger_search_needs_second_iteration),
None,
id="fusable_with_bigger_search",
),
pytest.param(
no_fuse_dot,
False,
{"x": EncryptedTensor(Integer(32, True), (10,))},
"""
The following subgraph is not fusable:
%0 = x # EncryptedTensor<int32, shape=(10,)>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ input node with shape (10,)
%1 = [1.33 1.33 ... 1.33 1.33] # ClearTensor<float64, shape=(10,)>
%2 = dot(%0, %1) # EncryptedScalar<float64>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ output shapes: #0, () are not the same as the subgraph's input: (10,)
%3 = astype(%2, dtype=int32) # EncryptedScalar<int32>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ output shapes: #0, () are not the same as the subgraph's input: (10,)
return %3
""".strip(), # noqa: E501 # pylint: disable=line-too-long
id="no_fuse_dot",
),
pytest.param(
ravel_cases,
False,
{"x": EncryptedTensor(Integer(32, True), (10, 20))},
"""
The following subgraph is not fusable:
%0 = x # EncryptedTensor<int32, shape=(10, 20)>
%1 = astype(%0, dtype=float64) # EncryptedTensor<float64, shape=(10, 20)>
%2 = ravel(%1) # EncryptedTensor<float64, shape=(200,)>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this node is explicitely marked by the package as non-fusable
%3 = astype(%2, dtype=int32) # EncryptedTensor<int32, shape=(200,)>
return %3
""".strip(), # noqa: E501 # pylint: disable=line-too-long
id="no_fuse_explicitely_ravel",
),
pytest.param(
transpose_cases,
False,
{"x": EncryptedTensor(Integer(32, True), (10, 20))},
"""
The following subgraph is not fusable:
%0 = x # EncryptedTensor<int32, shape=(10, 20)>
%1 = astype(%0, dtype=float64) # EncryptedTensor<float64, shape=(10, 20)>
%2 = transpose(%1) # EncryptedTensor<float64, shape=(20, 10)>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this node is explicitely marked by the package as non-fusable
%3 = astype(%2, dtype=int32) # EncryptedTensor<int32, shape=(20, 10)>
return %3
""".strip(), # noqa: E501 # pylint: disable=line-too-long
id="no_fuse_explicitely_transpose",
),
pytest.param(
lambda x: reshape_cases(x, (20, 10)),
False,
{"x": EncryptedTensor(Integer(32, True), (10, 20))},
"""
The following subgraph is not fusable:
%0 = x # EncryptedTensor<int32, shape=(10, 20)>
%1 = astype(%0, dtype=float64) # EncryptedTensor<float64, shape=(10, 20)>
%2 = reshape(%1, newshape=(20, 10)) # EncryptedTensor<float64, shape=(20, 10)>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this node is explicitely marked by the package as non-fusable
%3 = astype(%2, dtype=int32) # EncryptedTensor<int32, shape=(20, 10)>
return %3
""".strip(), # noqa: E501 # pylint: disable=line-too-long
id="no_fuse_explicitely_reshape",
),
pytest.param(
no_fuse_big_constant_3_10_10,
False,
{"x": EncryptedTensor(Integer(32, True), (10, 10))},
"""
The following subgraph is not fusable:
%0 = [[[1. 1. 1 ... . 1. 1.]]] # ClearTensor<float64, shape=(3, 10, 10)>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ this constant node has a bigger shape (3, 10, 10) than the subgraph's input: (10, 10)
%1 = x # EncryptedTensor<int32, shape=(10, 10)>
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ input node with shape (10, 10)
%2 = astype(%1, dtype=float64) # EncryptedTensor<float64, shape=(10, 10)>
%3 = add(%2, %0) # EncryptedTensor<float64, shape=(3, 10, 10)>
%4 = astype(%3, dtype=int32) # EncryptedTensor<int32, shape=(3, 10, 10)>
return %4
""".strip(), # noqa: E501 # pylint: disable=line-too-long
id="no_fuse_big_constant_3_10_10",
),
pytest.param(
simple_fuse_not_output,
True,
get_func_params_int32(simple_fuse_not_output),
None,
id="simple_fuse_not_output",
),
pytest.param(
simple_fuse_output,
True,
get_func_params_int32(simple_fuse_output),
None,
id="simple_fuse_output",
),
pytest.param(
lambda x, y: mix_x_and_y_intricately_and_call_f(numpy.rint, x, y),
True,
get_func_params_int32(lambda x, y: None),
None,
id="mix_x_and_y_intricately_and_call_f_with_rint",
),
pytest.param(
lambda x, y: mix_x_and_y_and_call_f(numpy.rint, x, y),
True,
get_func_params_int32(lambda x, y: None),
None,
id="mix_x_and_y_and_call_f_with_rint",
),
pytest.param(
transpose_cases,
True,
get_func_params_int32(transpose_cases),
None,
id="transpose_cases scalar",
),
pytest.param(
transpose_cases,
True,
{"x": EncryptedTensor(Integer(32, True), (10,))},
None,
id="transpose_cases ndim == 1",
),
pytest.param(
ravel_cases,
True,
{"x": EncryptedTensor(Integer(32, True), (10,))},
None,
id="ravel_cases ndim == 1",
),
pytest.param(
lambda x: reshape_cases(x, (10, 20)),
True,
{"x": EncryptedTensor(Integer(32, True), (10, 20))},
None,
id="reshape_cases same shape",
),
],
)
def test_fuse_float_operations(
function_to_trace,
fused,
params,
warning_message,
capfd,
remove_color_codes,
):
"""Test function for fuse_float_operations"""
op_graph = trace_numpy_function(
function_to_trace,
params,
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
if fused:
assert fused_num_nodes < orig_num_nodes
else:
assert fused_num_nodes == orig_num_nodes
captured = capfd.readouterr()
assert warning_message in (output := remove_color_codes(captured.err)), output
for input_ in [0, 2, 42, 44]:
inputs = ()
for param_input_value in params.values():
if param_input_value.is_scalar:
input_ = numpy.int32(input_)
else:
input_ = numpy.full(param_input_value.shape, input_, dtype=numpy.int32)
inputs += (input_,)
assert numpy.array_equal(function_to_trace(*inputs), op_graph(*inputs))
def subtest_tensor_no_fuse(fun, tensor_shape):
"""Test case to verify float fusing is only applied on functions on scalars."""
if tensor_shape == ():
# We want tensors
return
if fun in LIST_OF_UFUNC_WHICH_HAVE_INTEGER_ONLY_SOURCES:
# We need at least one input of the bivariate function to be float
return
# Float fusing currently cannot work if the constant in a bivariate operator is bigger than the
# variable input.
# Make a broadcastable shape but with the constant being bigger
variable_tensor_shape = (1,) + tensor_shape
constant_bigger_shape = (random.randint(2, 10),) + tensor_shape
def tensor_no_fuse(x):
intermediate = x.astype(numpy.float64)
intermediate = fun(intermediate, numpy.ones(constant_bigger_shape))
return intermediate.astype(numpy.int32)
function_to_trace = tensor_no_fuse
params_names = signature(function_to_trace).parameters.keys()
op_graph = trace_numpy_function(
function_to_trace,
{
param_name: EncryptedTensor(Integer(32, True), shape=variable_tensor_shape)
for param_name in params_names
},
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
assert orig_num_nodes == fused_num_nodes
def check_results_are_equal(function_result, op_graph_result):
"""Check the output of function execution and OPGraph evaluation are equal."""
if isinstance(function_result, tuple) and isinstance(op_graph_result, tuple):
assert len(function_result) == len(op_graph_result)
are_equal = (
function_output == op_graph_output
for function_output, op_graph_output in zip(function_result, op_graph_result)
)
elif not isinstance(function_result, tuple) and not isinstance(op_graph_result, tuple):
are_equal = (function_result == op_graph_result,)
else:
assert_not_reached(f"Incompatible outputs: {function_result}, {op_graph_result}")
return all(value.all() if isinstance(value, numpy.ndarray) else value for value in are_equal)
def subtest_fuse_float_unary_operations_correctness(fun, tensor_shape):
"""Test a unary function with fuse_float_operations."""
# Some manipulation to avoid issues with domain of definitions of functions
if fun == numpy.arccosh:
# 0 is not in the domain of definition
input_list = [1, 2, 42, 44]
super_fun_list = [mix_x_and_y_and_call_f]
elif fun in [numpy.arctanh, numpy.arccos, numpy.arcsin, numpy.arctan]:
# Needs values between 0 and 1 in the call function
input_list = [0, 2, 42, 44]
super_fun_list = [mix_x_and_y_into_range_0_to_1_and_call_f]
elif fun in [numpy.cosh, numpy.sinh, numpy.exp, numpy.exp2, numpy.expm1]:
# Not too large values to avoid overflows
input_list = [1, 2, 5, 11]
super_fun_list = [mix_x_and_y_and_call_f, mix_x_and_y_intricately_and_call_f]
else:
# Regular case
input_list = [0, 2, 42, 44]
super_fun_list = [mix_x_and_y_and_call_f, mix_x_and_y_intricately_and_call_f]
for super_fun in super_fun_list:
for input_ in input_list:
def get_function_to_trace():
return lambda x, y: super_fun(fun, x, y)
function_to_trace = get_function_to_trace()
params_names = signature(function_to_trace).parameters.keys()
op_graph = trace_numpy_function(
function_to_trace,
{
param_name: EncryptedTensor(Integer(32, True), tensor_shape)
for param_name in params_names
},
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
assert fused_num_nodes < orig_num_nodes
# Check that the call to the function or to the op_graph evaluation give the same
# result
tensor_diversifier = (
# The following +1 in the range is to avoid to have 0's which is not in the
# domain definition of some of our functions
numpy.arange(1, numpy.product(tensor_shape) + 1, dtype=numpy.int32).reshape(
tensor_shape
)
if tensor_shape != ()
else 1
)
if fun in [numpy.arctanh, numpy.arccos, numpy.arcsin, numpy.arctan]:
# Domain of definition for these functions
tensor_diversifier = (
numpy.ones(tensor_shape, dtype=numpy.int32) if tensor_shape != () else 1
)
input_ = numpy.int32(input_ * tensor_diversifier)
num_params = len(params_names)
assert num_params == 2
# Create inputs which are either of the form [x, x] or [x, y]
for j in range(4):
if fun in [numpy.arctanh, numpy.arccos, numpy.arcsin, numpy.arctan] and j > 0:
# Domain of definition for these functions
break
input_a = input_
input_b = input_ + j
if tensor_shape != ():
numpy.random.shuffle(input_a)
numpy.random.shuffle(input_b)
inputs = (input_a, input_b) if random.randint(0, 1) == 0 else (input_b, input_a)
function_result = function_to_trace(*inputs)
op_graph_result = op_graph(*inputs)
assert check_results_are_equal(function_result, op_graph_result)
LIST_OF_UFUNC_WHICH_HAVE_INTEGER_ONLY_SOURCES = {
numpy.bitwise_and,
numpy.bitwise_or,
numpy.bitwise_xor,
numpy.gcd,
numpy.lcm,
numpy.ldexp,
numpy.left_shift,
numpy.logical_and,
numpy.logical_not,
numpy.logical_or,
numpy.logical_xor,
numpy.remainder,
numpy.right_shift,
}
def subtest_fuse_float_binary_operations_correctness(fun, tensor_shape):
"""Test a binary functions with fuse_float_operations, with a constant as a source."""
for i in range(4):
# Know if the function is defined for integer inputs
if fun in LIST_OF_UFUNC_WHICH_HAVE_INTEGER_ONLY_SOURCES:
if i not in [0, 2]:
continue
# The .astype(numpy.float64) that we have in cases 0 and 2 is here to force
# a float output even for functions which return an integer (eg, XOR), such
# that our frontend always try to fuse them
# The .astype(numpy.float64) that we have in cases 1 and 3 is here to force
# a float output even for functions which return a bool (eg, EQUAL), such
# that our frontend always try to fuse them
# For bivariate functions: fix one of the inputs
if i == 0:
# With an integer in first position
ones_0 = numpy.ones(tensor_shape, dtype=numpy.int32) if tensor_shape != () else 1
def get_function_to_trace():
return lambda x, y: fun(3 * ones_0, x + y).astype(numpy.float64).astype(numpy.int32)
elif i == 1:
# With a float in first position
ones_1 = numpy.ones(tensor_shape, dtype=numpy.float64) if tensor_shape != () else 1
def get_function_to_trace():
return (
lambda x, y: fun(2.3 * ones_1, x + y).astype(numpy.float64).astype(numpy.int32)
)
elif i == 2:
# With an integer in second position
ones_2 = numpy.ones(tensor_shape, dtype=numpy.int32) if tensor_shape != () else 1
def get_function_to_trace():
return lambda x, y: fun(x + y, 4 * ones_2).astype(numpy.float64).astype(numpy.int32)
else:
# With a float in second position
ones_else = numpy.ones(tensor_shape, dtype=numpy.float64) if tensor_shape != () else 1
def get_function_to_trace():
return (
lambda x, y: fun(x + y, 5.7 * ones_else)
.astype(numpy.float64)
.astype(numpy.int32)
)
input_list = [0, 2, 42, 44]
# Domain of definition
if fun in [numpy.true_divide, numpy.remainder, numpy.floor_divide, numpy.fmod]:
input_list = [2, 42, 44]
for input_ in input_list:
function_to_trace = get_function_to_trace()
params_names = signature(function_to_trace).parameters.keys()
op_graph = trace_numpy_function(
function_to_trace,
{
param_name: EncryptedTensor(Integer(32, True), tensor_shape)
for param_name in params_names
},
)
orig_num_nodes = len(op_graph.graph)
fuse_float_operations(op_graph)
fused_num_nodes = len(op_graph.graph)
assert fused_num_nodes < orig_num_nodes
# Check that the call to the function or to the op_graph evaluation give the same
# result
tensor_diversifier = (
# The following +1 in the range is to avoid to have 0's which is not in the
# domain definition of some of our functions
numpy.arange(1, numpy.product(tensor_shape) + 1, dtype=numpy.int32).reshape(
tensor_shape
)
if tensor_shape != ()
else numpy.int64(1)
)
# Make sure the tensor diversifier is a numpy variable, otherwise some cases may fail
# as python int and float don't have the astype method
input_ = input_ * tensor_diversifier
num_params = len(params_names)
assert num_params == 2
# Create inputs which are either of the form [x, x] or [x, y]
for j in range(4):
inputs = (input_, input_ + j)
function_result = function_to_trace(*inputs)
op_graph_result = op_graph(*inputs)
assert check_results_are_equal(function_result, op_graph_result)
def subtest_fuse_float_binary_operations_dont_support_two_variables(fun, tensor_shape):
"""Test a binary function with fuse_float_operations, with no constant as
a source."""
def get_function_to_trace():
return lambda x, y: fun(x, y).astype(numpy.int32)
function_to_trace = get_function_to_trace()
params_names = signature(function_to_trace).parameters.keys()
with pytest.raises(NotImplementedError, match=r"Can't manage binary operator"):
trace_numpy_function(
function_to_trace,
{
param_name: EncryptedTensor(Integer(32, True), tensor_shape)
for param_name in params_names
},
)
@pytest.mark.parametrize("fun", tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC)
@pytest.mark.parametrize(
"tensor_shape", [pytest.param((), id="scalar"), pytest.param((3, 1, 2), id="tensor")]
)
def test_ufunc_operations(fun, tensor_shape):
"""Test functions which are in tracing.NPTracer.LIST_OF_SUPPORTED_UFUNC."""
if fun.nin == 1:
subtest_fuse_float_unary_operations_correctness(fun, tensor_shape)
elif fun.nin == 2:
subtest_fuse_float_binary_operations_correctness(fun, tensor_shape)
subtest_fuse_float_binary_operations_dont_support_two_variables(fun, tensor_shape)
subtest_tensor_no_fuse(fun, tensor_shape)
else:
raise NotImplementedError("Only unary and binary functions are tested for now")