mirror of
https://github.com/crewAIInc/crewAI.git
synced 2026-01-09 14:37:59 -05:00
Supporting no-code Guardrail creation (#2636)
* feat: support to define a guardrail task no-code * feat: add auto-discovery for Guardrail code execution mode * feat: handle malformed or invalid response from CodeInterpreterTool * feat: allow to set unsafe_mode from Guardrail task * feat: renaming GuardrailTask to TaskGuardrail * feat: ensure guardrail is callable while initializing Task * feat: remove Docker availability check from TaskGuardrail The CodeInterpreterTool already ensures compliance with this requirement. * refactor: replace if/raise with assert For this use case `assert` is more appropriate choice * test: remove useless or duplicated test * fix: attempt to fix type-checker * feat: support to define a task guardrail using YAML config * refactor: simplify TaskGuardrail to use LLM for validation, no code generation * docs: update TaskGuardrail doc strings * refactor: drop task paramenter from TaskGuardrail This parameter was used to get the model from the `task.agent` which is a quite bit redudant since we could propagate the llm directly
This commit is contained in:
@@ -322,6 +322,10 @@ blog_task = Task(
|
||||
- On success: it returns a tuple of `(bool, Any)`. For example: `(True, validated_result)`
|
||||
- On Failure: it returns a tuple of `(bool, str)`. For example: `(False, "Error message explain the failure")`
|
||||
|
||||
### TaskGuardrail
|
||||
|
||||
The `TaskGuardrail` class offers a robust mechanism for validating task outputs
|
||||
|
||||
### Error Handling Best Practices
|
||||
|
||||
1. **Structured Error Responses**:
|
||||
@@ -750,6 +754,8 @@ Task guardrails provide a powerful way to validate, transform, or filter task ou
|
||||
|
||||
### Basic Usage
|
||||
|
||||
#### Define your own logic to validate
|
||||
|
||||
```python Code
|
||||
from typing import Tuple, Union
|
||||
from crewai import Task
|
||||
@@ -769,6 +775,57 @@ task = Task(
|
||||
)
|
||||
```
|
||||
|
||||
#### Leverage a no-code approach for validation
|
||||
|
||||
```python Code
|
||||
from crewai import Task
|
||||
|
||||
task = Task(
|
||||
description="Generate JSON data",
|
||||
expected_output="Valid JSON object",
|
||||
guardrail="Ensure the response is a valid JSON object"
|
||||
)
|
||||
```
|
||||
|
||||
#### Using YAML
|
||||
|
||||
```yaml
|
||||
research_task:
|
||||
...
|
||||
guardrail: make sure each bullet contains a minimum of 100 words
|
||||
...
|
||||
```
|
||||
|
||||
```python Code
|
||||
@CrewBase
|
||||
class InternalCrew:
|
||||
agents_config = "config/agents.yaml"
|
||||
tasks_config = "config/tasks.yaml"
|
||||
|
||||
...
|
||||
@task
|
||||
def research_task(self):
|
||||
return Task(config=self.tasks_config["research_task"]) # type: ignore[index]
|
||||
...
|
||||
```
|
||||
|
||||
|
||||
#### Use custom models for code generation
|
||||
|
||||
```python Code
|
||||
from crewai import Task
|
||||
from crewai.llm import LLM
|
||||
|
||||
task = Task(
|
||||
description="Generate JSON data",
|
||||
expected_output="Valid JSON object",
|
||||
guardrail=TaskGuardrail(
|
||||
description="Ensure the response is a valid JSON object",
|
||||
llm=LLM(model="gpt-4o-mini"),
|
||||
)
|
||||
)
|
||||
```
|
||||
|
||||
### How Guardrails Work
|
||||
|
||||
1. **Optional Attribute**: Guardrails are an optional attribute at the task level, allowing you to add validation only where needed.
|
||||
|
||||
Reference in New Issue
Block a user