diff --git a/script/research/bltprf/naive.sage b/script/research/bltprf/naive.sage new file mode 100644 index 000000000..b9c98f5e6 --- /dev/null +++ b/script/research/bltprf/naive.sage @@ -0,0 +1,80 @@ +q = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001 +K = GF(q) +a = K(0x00) +b = K(0x05) +E = EllipticCurve(K, (a, b)) +G = E(0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000000, 0x02) + +p = 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001 +assert E.order() == p +Scalar = GF(p) + +a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 = ( + Scalar(110), Scalar(56), Scalar(89), Scalar(6543), Scalar(2), + Scalar(110), Scalar(44), Scalar(78), Scalar(77), Scalar(4)) + +G1, G2, G3, G4, G5, G6, G7, G8, G9, G10 = ( + E.random_element(), E.random_element(), E.random_element(), + E.random_element(), E.random_element(), E.random_element(), + E.random_element(), E.random_element(), E.random_element(), + E.random_element()) + +A = (int(a1) * G1 + int(a2) * G2 + int(a3) * G3 + int(a4) * G4 + + int(a5) * G5 + int(a6) * G6 + int(a7) * G7 + int(a8) * G8 + + int(a9) * G9 + int(a10) * G10) + +a1, a2, a3, a4, a5 = (a1, a2), (a3, a4), (a5, a6), (a7, a8), (a9, a10) +G1, G2, G3, G4, G5 = (G1, G2), (G3, G4), (G5, G6), (G7, G8), (G9, G10) + +# a1 G1-\ a2 G1 a3 G1 a4 G1 a5 G1 +# a1 G2 \-a2 G2-\ a3 G2 a4 G2 a5 G2 +# a1 G3 a2 G3 \-a3 G3-\ a4 G3 a5 G3 +# a1 G4 a2 G4 a3 G4 \-a4 G4-\ a5 G4 +# a1 G5 a2 G5 a3 G5 a4 G5 \-a5 G5 + +# Dot product +def dot(x, y): + result = None + for x_i, y_i in zip(x, y): + if result is None: + result = int(x_i) * y_i + else: + result += int(x_i) * y_i + return result + +# Main diagonal is sum(a_i G_i) = A +assert dot(a1, G1) + dot(a2, G2) + dot(a3, G3) + dot(a4, G4) + dot(a5, G5) == A + +# Sum all the diagonals of the grid above +A_neg_4 = dot(a1, G5) +A_neg_3 = dot(a1, G4) + dot(a2, G5) +A_neg_2 = dot(a1, G3) + dot(a2, G4) + dot(a3, G5) +A_neg_1 = dot(a1, G2) + dot(a2, G3) + dot(a3, G4) + dot(a4, G5) +A_0 = A +A_1 = dot(a2, G1) + dot(a3, G2) + dot(a4, G3) + dot(a5, G4) +A_2 = dot(a3, G1) + dot(a4, G2) + dot(a5, G3) +A_3 = dot(a4, G1) + dot(a5, G2) +A_4 = dot(a5, G1) + +x = Scalar.random_element() +a_prime = (x * vector(a1) + x^2 * vector(a2) + + x^3 * vector(a3) + x^4 * vector(a4) + + x^5 * vector(a5)) +# Sage cannot do this: +# +# G_prime = (int(x^-1) * vector(G1) + int(x^-2) * vector(G2) +# + int(x^-3) * vector(G3) + int(x^-4) * vector(G4) +# + int(x^-5) * vector(G5)) +G_prime = [(int(x^-1) * G1[0] + int(x^-2) * G2[0] + int(x^-3) * G3[0] + + int(x^-4) * G4[0] + int(x^-5) * G5[0]), + (int(x^-1) * G1[1] + int(x^-2) * G2[1] + int(x^-3) * G3[1] + + int(x^-4) * G4[1] + int(x^-5) * G5[1])] +assert len(a_prime) == len(G_prime) == 2 +A_prime = dot(a_prime, G_prime) + +assert (int(x^-4) * A_neg_4 + int(x^-3) * A_neg_3 + int(x^-2) * A_neg_2 + + int(x^-1) * A_neg_1 + + A_0 + + int(x) * A_1 + int(x^2) * A_2 + int(x^3) * A_3 + int(x^4) * A_4) \ + == A_prime +