mirror of
https://github.com/darkrenaissance/darkfi.git
synced 2026-01-08 22:28:12 -05:00
[research/bulletproof-mpc] comment code
This commit is contained in:
@@ -1,17 +1,9 @@
|
||||
'''
|
||||
bulletproof protocol 2 with multi-exponentiation.
|
||||
'''
|
||||
load('../mpc/curve.sage')
|
||||
load('../mpc/ec_share.sage')
|
||||
load('../mpc/share.sage')
|
||||
load('../mpc/beaver.sage')
|
||||
|
||||
def countZeros(x):
|
||||
total_bits = 32
|
||||
res = 0
|
||||
count = 0
|
||||
while ((x & (1 << (total_bits - 1))) == 0) and count < 32:
|
||||
x = (x << 1)
|
||||
res += 1
|
||||
count += 1
|
||||
return res
|
||||
load('utils.sage')
|
||||
|
||||
class Proof(object):
|
||||
def __init__(self, transcript, Q, G_factors, H_factors, G, H, a, b):
|
||||
@@ -36,51 +28,65 @@ class Proof(object):
|
||||
L_gr_al_g = CurvePoint.msm(G_r, al_g)
|
||||
L_hl_br_h = CurvePoint.msm(H_l, br_h)
|
||||
L_q_cl = CurvePoint.msm(Q, c_l)
|
||||
# L, R
|
||||
# note that P = L*R
|
||||
L = [sum([L_gr_al_g, L_hl_br_h , L_q_cl])]
|
||||
R = [sum([CurvePoint.msm(G_l, [ar*g for ar, g in zip(a_r, G_factors[0:n])]), CurvePoint.msm(H_r, [bl*h for bl,h in zip(b_l, H_factors[n:2*n])]), CurvePoint.msm(Q, c_r)])]
|
||||
L_l += L
|
||||
R_l += R
|
||||
|
||||
# choose true random challenges u, u^{-1}
|
||||
transcript.append_message(b'L', bytes(''.join([l.__str__() for l in L]), encoding='utf-8'))
|
||||
transcript.append_message(b'R', bytes(''.join([r.__str__() for r in R]), encoding='utf-8'))
|
||||
u = K(transcript.challenge_bytes(b'u'))
|
||||
u_inv = 1/u
|
||||
|
||||
for i in range(n):
|
||||
# a_prime
|
||||
a_l[i] = a_l[i] * u + u_inv * a_r[i]
|
||||
# p_prime
|
||||
b_l[i] = b_l[i] * u_inv + u * b_r[i]
|
||||
# G_prime
|
||||
G_l[i] = CurvePoint.msm([G_l[i], G_r[i]], [u_inv * G_factors[i], u * G_factors[n+i]])
|
||||
# H_prime
|
||||
H_l[i] = CurvePoint.msm([H_l[i], H_r[i]], [u * H_factors[i], u_inv * H_factors[n+i]])
|
||||
a = a_l
|
||||
b = b_l
|
||||
G = G_l
|
||||
H = H_l
|
||||
a = a_l # a is a_prime
|
||||
b = b_l # b is b_prime
|
||||
G = G_l # G is G_prime
|
||||
H = H_l # H is H_prime
|
||||
while n!=1:
|
||||
n /=2
|
||||
a_l, a_r = a[0:n], a[n:]
|
||||
b_l, b_r = b[0:n], b[n:]
|
||||
G_l, G_r = G[0:n], G[n:]
|
||||
H_l, H_r = H[0:n], H[n:]
|
||||
a_l, a_r = a[0:n], a[n:] # a_prime_l, a_prime_r
|
||||
b_l, b_r = b[0:n], b[n:] # b_prime_l, b_prime_r
|
||||
G_l, G_r = G[0:n], G[n:] # G_prime_l, G_prime_r
|
||||
H_l, H_r = H[0:n], H[n:] # H_prime_l, H_prime_r
|
||||
|
||||
c_l = [sum([a*b for (a,b) in zip(a_l, b_r)])]
|
||||
c_r = [sum([a*b for (a,b) in zip(a_r, b_l)])]
|
||||
c_l = [sum([a*b for (a,b) in zip(a_l, b_r)])] # c_prime_l
|
||||
c_r = [sum([a*b for (a,b) in zip(a_r, b_l)])] # c_prime_r
|
||||
|
||||
# L_prime
|
||||
L = [sum([CurvePoint.msm(G_r, a_l), CurvePoint.msm(H_l, b_r), CurvePoint.msm(Q, c_l)])]
|
||||
|
||||
# R_prime
|
||||
R = [sum([CurvePoint.msm(G_l, a_r), CurvePoint.msm(H_r, b_l), CurvePoint.msm(Q, c_r)])]
|
||||
|
||||
L_l += L
|
||||
R_l += R
|
||||
|
||||
# choose true random challenges u, u^{-1]}
|
||||
transcript.append_message(b'L', bytes(''.join([l.__str__() for l in L]), encoding='utf-8'))
|
||||
transcript.append_message(b'R', bytes(''.join([r.__str__() for r in R]), encoding='utf-8'))
|
||||
|
||||
u = K(transcript.challenge_bytes(b'u'))
|
||||
u_inv = 1/u
|
||||
for i in range(n):
|
||||
# u * a_prime_l + u^{-1} * a_prime_r
|
||||
a_l[i] = a_l[i] * u + u_inv * a_r[i]
|
||||
# u^{-1} * b_prime_l + u * b_prime_r
|
||||
b_l[i] = b_l[i] * u_inv + u * b_r[i]
|
||||
# G_l_prime
|
||||
G_l[i] = CurvePoint.msm([G_l[i], G_r[i]], [u_inv, u])
|
||||
# H_l_prime
|
||||
H_l[i] = CurvePoint.msm([H_l[i], H_r[i]], [u, u_inv])
|
||||
a = a_l
|
||||
b = b_l
|
||||
@@ -123,16 +129,25 @@ class Proof(object):
|
||||
def verify(self, n, verifier, G_factors, H_factors, P, Q, G, H):
|
||||
u_sq, u_inv_sq, s = self.challenges(n, verifier)
|
||||
g_times_a_times_s = [self.a * s_i * g_i for g_i, s_i in zip(G_factors, s)][:n]
|
||||
# inverse of count is reverse
|
||||
inv_s = reversed(s)
|
||||
h_times_b_div_s = [self.b * s_i_inv * h_i for h_i, s_i_inv in zip(H_factors, inv_s)]
|
||||
neg_u_sq = [i*K(-1) for i in u_sq]
|
||||
neg_u_inv_sq = [i*K(-1) for i in u_inv_sq]
|
||||
# P
|
||||
## u^c
|
||||
res_p_1 = CurvePoint.msm(Q, [self.a*self.b])
|
||||
## g^{g_factor_a_s}
|
||||
res_p_2 = CurvePoint.msm(G, g_times_a_times_s)
|
||||
## h^{h_factor_b_s}
|
||||
res_p_3 = CurvePoint.msm(H, h_times_b_div_s)
|
||||
# L^(u^2)
|
||||
res_p_4 = CurvePoint.msm(self.lhs, neg_u_sq)
|
||||
# R^(u^-2)
|
||||
res_p_5 = CurvePoint.msm(self.rhs, neg_u_inv_sq)
|
||||
# P prime = L^{u^2} * P * R^{u^{-1}}
|
||||
res_p = res_p_1 + res_p_2 + res_p_3 + res_p_4 + res_p_5;
|
||||
res = res_p == P
|
||||
# P prime == H(u^{-1} * a_prime_r, u * a_prime_l, u * b_prime_r, u ^ {-1} * b_prime_l, c_prime)
|
||||
assert (res), 'P: {}, expected P: {}'.format(res_p, P)
|
||||
return res_p, P, res
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
|
||||
os.environ['PYTHONHASHSEED'] = '1234'
|
||||
os.environ['PYTHONHASHSEED'] = '0'
|
||||
random.seed(0)
|
||||
class Transcript(object):
|
||||
def __init__(self, label):
|
||||
|
||||
9
script/research/bulletproof-mpc/utils.sage
Normal file
9
script/research/bulletproof-mpc/utils.sage
Normal file
@@ -0,0 +1,9 @@
|
||||
def countZeros(x):
|
||||
total_bits = 32
|
||||
res = 0
|
||||
count = 0
|
||||
while ((x & (1 << (total_bits - 1))) == 0) and count < 32:
|
||||
x = (x << 1)
|
||||
res += 1
|
||||
count += 1
|
||||
return res
|
||||
Reference in New Issue
Block a user