# Player 1: # # $ sage multisig.sage genshare 2 3 # A_0 = (17885028560402702239015261002188504514192120716688655005384557793085172279782, 8478670718018646753668209243232218399157692386519596227477013206445567901574) # A_1 = (24159996358010728217037819815568538754372914232633035350125672407860245980511, 25930880768349059332486494233731724414031492717763788767169325464072537905825) # # 18245370559787825905107196417449809168129753681991950558452633836050485263625*X + Y + 21540401009192565430578225487575742717824479971010380831145688671749585986737 # # Player 1's R = (1, 18110273049677706376100070599318402040771879310880963369761162988986654645832) # Player 2's R = (2, 28812924799218929326885620434040569836005182110830660190988271901329532330304) # Player 3's R = (3, 10567554239431103421778424016590760667875428428838709632535638065279047066679) # # Player 2: # # $ sage multisig.sage genshare 2 3 # A_0 = (802940932777049145807706375204159819724468245569326332695920733054960506640, 16355306126743352920399387200062438463930792131448355230670435463427127600465) # A_1 = (18141591414190824859071415735841428554530479628199222928098733408655160229999, 8126608045648459195646305845881115977993411928279311595258374101920586157117) # # 11632470451635415873896303993978816754215391793499851090581681689882331027728*X + Y + 14165208049524082319699866276606579004249018988481566200129536690961988099823 # # Player 1's R = (1, 3150343808169550662296575981586581204898645699960230088968524367549043820546) # Player 2's R = (2, 20465895665863183644293018239779741414046310388402026378066585426060075740915) # Player 3's R = (3, 8833425214227767770396714245800924659830918594902175287484903736177744713187) # # Player 3: # # $ sage multisig.sage genshare 2 3 # A_0 = (18050147058625614196833411623290233672504963362553094195996683497184802776885, 1558020177192412780876956779873498858051955811269538614817345479760770446460) # A_1 = (8859924332949089269591379272271847007387528856001855566494832087904814398546, 27961455601858187272958269886544614132704520355314277906405837204662338231452) # # 22603695278713704898809499991696306162603661219853447180662052608597912268649*X + Y + 26665809323852841663944379970510953158263212308412307792093486582513151778711 # # Player 1's R = (1, 8626540016091551149031612542136694605859239435617539786603946305675661848834) # Player 2's R = (2, 14970867046706895106114858802612365406618634697705739985621636445471112528282) # Player 3's R = (3, 21315194077322239063198105063088036207378029959793940184639326585266563207730) # Each player has now generated the curve, shared its commits, and distributed shares. # Now we recover the public key using all A0s # # $ sage multisig.sage pubkey "(17885028560402702239015261002188504514192120716688655005384557793085172279782, 8478670718018646753668209243232218399157692386519596227477013206445567901574)" "(802940932777049145807706375204159819724468245569326332695920733054960506640, 16355306126743352920399387200062438463930792131448355230670435463427127600465)" "(18050147058625614196833411623290233672504963362553094195996683497184802776885, 1558020177192412780876956779873498858051955811269538614817345479760770446460)" # # (9803495978299341257553881350441085748898862974053305000078308077444698847765 : 7803011951094511021525891181798443393652882333120996671357964800654859381546 : 1) # To recover the shared secret, player's 1 and 2 will work together to # recreate all 3 curves. # # $ sage multisig.sage recover "(1, 18110273049677706376100070599318402040771879310880963369761162988986654645832)" "(2, 28812924799218929326885620434040569836005182110830660190988271901329532330304)" # 21540401009192565430578225487575742717824479971010380831145688671749585986737 # # $ sage multisig.sage recover "(1, 3150343808169550662296575981586581204898645699960230088968524367549043820546)" "(2, 20465895665863183644293018239779741414046310388402026378066585426060075740915)" # 14165208049524082319699866276606579004249018988481566200129536690961988099823 # # $ sage multisig.sage recover "(1, 8626540016091551149031612542136694605859239435617539786603946305675661848834)" "(2, 14970867046706895106114858802612365406618634697705739985621636445471112528282)" # 26665809323852841663944379970510953158263212308412307792093486582513151778711 # # You can see each command returns the constant coefficient in each curve. # Finally we combine these to get the final curve and hence shared secret. # # $ sage multisig.sage combine 14165208049524082319699866276606579004249018988481566200129536690961988099823 21540401009192565430578225487575742717824479971010380831145688671749585986737 26665809323852841663944379970510953158263212308412307792093486582513151778711 # Secret: 4475373763911391702436979230349320953610598304020960064009226448437999969077 # Pubkey: (9803495978299341257553881350441085748898862974053305000078308077444698847765 : 7803011951094511021525891181798443393652882333120996671357964800654859381546 : 1) # # We can see the public key matches what we got in the 'pubkey' step. import argparse, base64, sys q = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001 K = GF(q) P. = K[] p = 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001 Fp = GF(p) E = EllipticCurve(Fp, (0, 5)) G = E( 23241645597038891398529199502196854108878665864265357905694087894995100434173, 14702009283686283423048268817274882285027504402886079870290245450065579125215 ) assert G.order() == q def genshare(args): t, n = args.t, args.n assert t <= n C = Y A = [] for i in range(t): a_i = K.random_element() C += a_i * X^i A_i = a_i*G print(f"A_{i} = ({A_i[0]}, {A_i[1]})") A.append(A_i) print() print(C) print() R = [] for j in range(1, n+1): x_j = j y_j = -C(X=x_j, Y=0) assert C(X=x_j, Y=y_j) == 0 R_j = (x_j, y_j) print(f"Player {j}'s R = {R_j}") R.append(R_j) # Each player upon receiving their shares should perform this check def eval_C(x): P = E(0) for i, A_i in enumerate(A): P += x^i * A_i return P for R_j in R: x_j, y_j = R_j assert y_j*G + eval_C(x_j) == E(0) def pubkey(args): P = E(0) for A0str in args.A0: x, y = A0str.split(",") x = x.strip("(") y = y.strip(") ") x, y = K(x), K(y) A0 = E(x, y) P += A0 print(P) def recover(args): R = [] for Rjstr in args.Rj: x, y = Rjstr.split(",") x = x.strip("(") y = y.strip(") ") x, y = K(x), K(y) R_j = (x, y) R.append(R_j) # Create the Vandermonde matrix with a₀, …, aₜ₋₁ as indeterminates. V = [] t = len(R) y = [] for R_j in R: x_j, y_j = R_j y.append(y_j) V.append([x_j^i for i in range(t)]) V = matrix(V) y = vector(y) a = V^-1 * -y print(a[0]) def combine(args): a0 = K(0) for a in args.a0: a0 += a print(f"Secret: {a0}") print(f"Pubkey: {a0*G}") def main(): parser = argparse.ArgumentParser(prog="multisig.sage") subparsers = parser.add_subparsers(required=True) parser_genshare = subparsers.add_parser("genshare", help="Generate a share") parser_genshare.add_argument("t", type=int, help="threshold for recovery") parser_genshare.add_argument("n", type=int, help="total players") parser_genshare.set_defaults(func=genshare) parser_pubkey = subparsers.add_parser("pubkey", help="Compute shared pubkey") parser_pubkey.add_argument("A0", nargs="+") parser_pubkey.set_defaults(func=pubkey) parser_recover = subparsers.add_parser("recover", help="Recover shared secret") parser_recover.add_argument("Rj", nargs="+") parser_recover.set_defaults(func=recover) parser_combine = subparsers.add_parser("combine", help="Combine shared secrets") parser_combine.add_argument("a0", type=int, nargs="+") parser_combine.set_defaults(func=combine) args = parser.parse_args() args.func(args) main()