mirror of
https://github.com/darkrenaissance/darkfi.git
synced 2026-01-08 22:28:12 -05:00
360 lines
8.4 KiB
Python
360 lines
8.4 KiB
Python
# Initialize an elliptic curve
|
|
p = 115792089237316195423570985008687907853269984665640564039457584007908834671663
|
|
r = 115792089237316195423570985008687907852837564279074904382605163141518161494337
|
|
Fp = GF(p) # Base Field
|
|
Fr = GF(r) # Scalar Field
|
|
A = 0
|
|
B = 7
|
|
E = EllipticCurve(GF(p), [A,B])
|
|
assert(E.cardinality() == r)
|
|
|
|
K.<x> = PolynomialRing(Fp, implementation="generic")
|
|
L.<y> = PolynomialRing(K, implementation="generic")
|
|
M.<z> = L[]
|
|
eqn = y^2 - x^3 - A * x - B
|
|
|
|
# Returns line passing through points, works for all points and returns 1 for O + O = O
|
|
def line(A, B):
|
|
if A == 0 and B == 0:
|
|
return 1
|
|
else:
|
|
[a, b, c] = Matrix([A, B, -(A+B)]).transpose().kernel().basis()[0]
|
|
return a*x + b*y + c
|
|
|
|
def dlog(D):
|
|
# Derivative via partials
|
|
Dx = D.differentiate(x)
|
|
Dy = D.differentiate(y)
|
|
Dz = Dx + Dy * ((3*x^2 + A) / (2*y))
|
|
assert D != 0
|
|
return Dz/D
|
|
|
|
def dlog_alt(D):
|
|
Dx = D.differentiate(x)
|
|
Dy = D.differentiate(y)
|
|
#Dz = Dx + Dy * ((3*x^2 + A) / (2*y))
|
|
|
|
# Normally we calculate:
|
|
# Dz/D
|
|
# Due to a bug in sage, we will make the denominator D
|
|
# solely an equation in x by taking its norm.
|
|
|
|
# Denominator = V · V'
|
|
V = 2*y * D
|
|
# 2y Dz
|
|
Dz_numer = (2*y*Dx + Dy * (3*x^2 + A) * V(y=-y)).mod(eqn)
|
|
# Change denominator to the norm
|
|
D_denom = (V * V(y=-y)).mod(eqn)
|
|
|
|
# This calculation is quite slow...
|
|
print("Calculating Dlog = Dz/D")
|
|
return Dz_numer / D_denom
|
|
|
|
# Accepts arbitrary list of points, including duplicates and inverses, and constructs function
|
|
# intersecting exactly those points if they form a principal divisor (i.e. sum to zero).
|
|
def construct_function(Ps):
|
|
# List of intermediate sums/principal divisors, removes 0
|
|
xs = [(P, line(P, -P)) for P in Ps if P != 0]
|
|
|
|
while len(xs) != 1:
|
|
assert(sum(P for (P, _) in xs) == 0)
|
|
xs2 = []
|
|
|
|
# Carry extra point forward
|
|
if mod(len(xs), 2) == 1:
|
|
x0 = xs[0]
|
|
xs = xs[1:]
|
|
else:
|
|
x0 = None
|
|
|
|
# Combine the functions for all pairs
|
|
for n in range(0, floor(len(xs)/2)):
|
|
(A, aNum) = xs[2*n]
|
|
(B, bNum) = xs[2*n+1]
|
|
|
|
# Divide out intermediate (P, -P) factors
|
|
num = L((aNum * bNum * line(A, B)).mod(eqn))
|
|
den = line(A, -A) * line(B, -B)
|
|
D = num / K(den)
|
|
|
|
# Add new element
|
|
xs2.append((A+B, D))
|
|
|
|
if x0 != None:
|
|
xs2.append(x0)
|
|
|
|
xs = xs2
|
|
|
|
assert(xs[0][0] == 0)
|
|
|
|
# Normalize, might fail but negl probability for random points. Must be done for zkps
|
|
# although free to use any coefficient
|
|
return D / D(x=0, y=0)
|
|
|
|
P0 = E.random_element()
|
|
P1 = E.random_element()
|
|
P2 = E.random_element()
|
|
Q = -int(Fr(5)^-1) * (P0 + 2*P1 + 3*P2)
|
|
assert P0 + 2*P1 + 3*P2 + 5*Q == 0
|
|
|
|
def div_add(div_f, div_g):
|
|
div = div_f.copy()
|
|
for P, n in div_g.items():
|
|
if P in div:
|
|
div[P] += n
|
|
else:
|
|
div[P] = n
|
|
div = dict((P, n) for P, n in div.items() if n != 0)
|
|
return div
|
|
|
|
def div_invert(div):
|
|
return dict((P, -n) for P, n in div.items())
|
|
|
|
def div_sub(div_f, div_g):
|
|
inv_div_g = div_invert(div_g)
|
|
return div_add(div_f, inv_div_g)
|
|
|
|
# 2[P₂] + [-2P₂] - 3[∞]
|
|
f1 = line(P2, P2)
|
|
D1 = {"P2": 2, "-2P2": 1, "∞": -3}
|
|
# 2[P₁] + [-2P₁] - 3[∞]
|
|
f2 = line(P1, P1)
|
|
D2 = {"P1": 2, "-2P1": 1, "∞": -3}
|
|
# [P₂] + [-P₂] - 2[∞]
|
|
f3 = line(P2, -P2)
|
|
D3 = {"P2": 1, "-P2": 1, "∞": -2}
|
|
# [P₀] + [-P₀] - 2[∞]
|
|
f4 = line(P0, -P0)
|
|
D4 = {"P0": 1, "-P0": 1, "∞": -2}
|
|
|
|
# (2[P₂] + [-2P₂] - 3[∞]
|
|
# + 2[P₁] + [-2P₁] - 3[∞]
|
|
# + [P₂] + [-P₂] - 2[∞]
|
|
# + [P₀] + [-P₀] - 2[∞])
|
|
# =
|
|
# [P₀] + 2[P₁] + 3[P₂] + [-P₀] + [-2P₁] + [-2P₂] + [-P₂] - 10[∞]
|
|
f5 = f1*f2*f3*f4
|
|
D5 = div_add(div_add(D1, D2), div_add(D3, D4))
|
|
assert D5 == {
|
|
"P0": 1,
|
|
"P1": 2,
|
|
"P2": 3,
|
|
"-P0": 1,
|
|
"-2P1": 1,
|
|
"-2P2": 1,
|
|
"-P2": 1,
|
|
"∞": -10
|
|
}
|
|
|
|
# [-2P₂] + [-2P₁] + [2(P₁ + P₂)] - 3[∞]
|
|
f6 = line(-2*P2, -2*P1)
|
|
D6 = {"-2P2": 1, "-2P1": 1, "2P1 + 2P2": 1, "∞": -3}
|
|
# [-P₂] + [-P₀] + [P₀ + P₂] - 3[∞]
|
|
f7 = line(-P2, -P0)
|
|
D7 = {"-P2": 1, "-P0": 1, "P0 + P2": 1, "∞": -3}
|
|
|
|
# ([P₀] + 2[P₁] + 3[P₂] + [-P₀] + [-2P₁] + [-2P₂] + [-P₂] - 10[∞]
|
|
# - [-2P₂] - [-2P₁] - [2(P₁ + P₂)] + 3[∞]
|
|
# - [-P₂] - [-P₀] - [P₀ + P₂] + 3[∞])
|
|
# =
|
|
# [P₀] + 2[P₁] + 3[P₂] - [2(P₁ + P₂)] - [P₀ + P₂] - 4[∞]
|
|
f8 = f5/(f6*f7)
|
|
D8 = div_sub(D5, div_add(D6, D7))
|
|
assert D8 == {
|
|
"P0": 1,
|
|
"P1": 2,
|
|
"P2": 3,
|
|
"2P1 + 2P2": -1,
|
|
"P0 + P2": -1,
|
|
"∞": -4
|
|
}
|
|
|
|
# [P₀ + P₂] + [2(P₁ + P₂)] + [-(P₀ + 2P₁ + 3P₂)] - 3[∞]
|
|
f9 = line(P0 + P2, 2*(P1 + P2))
|
|
D9 = {"P0 + P2": 1, "2P1 + 2P2": 1, "5Q": 1, "∞": -3}
|
|
# ([P₀] + 2[P₁] + 3[P₂] - [2(P₁ + P₂)] - [P₀ + P₂] - 4[∞]
|
|
# + [P₀ + P₂] + [2(P₁ + P₂)] + [-(P₀ + 2P₁ + 3P₂)] - 3[∞])
|
|
# =
|
|
# [P₀] + 2[P₁] + 3[P₂] + [-(P₀ + 2P₁ + 3P₂)] - 7[∞]
|
|
# = [P₀] + 2[P₁] + 3[P₂] + [5Q] - 7[∞]
|
|
f10 = f8*f9
|
|
D10 = div_add(D8, D9)
|
|
assert D10 == {
|
|
"P0": 1,
|
|
"P1": 2,
|
|
"P2": 3,
|
|
"5Q": 1,
|
|
"∞": -7
|
|
}
|
|
|
|
# Now construct 5[Q]
|
|
|
|
# 2[Q] + [-2Q] - 3[∞]
|
|
f11 = line(Q, Q)
|
|
D11 = {"Q": 2, "-2Q": 1, "∞": -3}
|
|
|
|
# [-2Q] + [2Q] - 2[∞]
|
|
f12 = line(-2*Q, 2*Q)
|
|
D12 = {"-2Q": 1, "2Q": 1, "∞": -2}
|
|
|
|
# (2[Q] + [-2Q] - 3[∞]) - ([-2Q] + [2Q] - 2[∞])
|
|
# ==
|
|
# 2[Q] - [2Q] - [∞]
|
|
f13 = f11/f12
|
|
D13 = div_sub(D11, D12)
|
|
assert D13 == {
|
|
"Q": 2,
|
|
"2Q": -1,
|
|
"∞": -1
|
|
}
|
|
|
|
# multiply by 3
|
|
# 6[Q] - 3[2Q] - 3[∞]
|
|
f14 = f13*f13*f13
|
|
D14 = div_add(div_add(D13, D13), D13)
|
|
assert D14 == {
|
|
"Q": 6,
|
|
"2Q": -3,
|
|
"∞": -3
|
|
}
|
|
|
|
# 2[2Q] + [-4Q] - 3[∞]
|
|
f15 = line(2*Q, 2*Q)
|
|
D15 = {"2Q": 2, "-4Q": 1, "∞": -3}
|
|
|
|
# (6[Q] - 3[2Q] - 3[∞]) + (2[2Q] + [-4Q] - 3[∞])
|
|
# ==
|
|
# 6[Q] - [2Q] + [-4Q] - 6[∞]
|
|
f16 = f14*f15
|
|
D16 = div_add(D14, D15)
|
|
assert D16 == {
|
|
"Q": 6,
|
|
"2Q": -1,
|
|
"-4Q": 1,
|
|
"∞": -6
|
|
}
|
|
|
|
# [2Q] + [-2Q] - 2[∞]
|
|
f17 = line(2*Q, -2*Q)
|
|
D17 = {"2Q": 1, "-2Q": 1, "∞": -2}
|
|
|
|
# (6[Q] - [2Q] + [-4Q] - 6[∞]) + ([2Q] + [-2Q] - 2[∞])
|
|
# ==
|
|
# 6[Q] + [-2Q] + [-4Q] - 8[∞]
|
|
f18 = f16*f17
|
|
D18 = div_add(D16, D17)
|
|
assert D18 == {
|
|
"Q": 6,
|
|
"-2Q": 1,
|
|
"-4Q": 1,
|
|
"∞": -8
|
|
}
|
|
|
|
# [-2Q] + [-4Q] + [6Q] - 3[∞]
|
|
f19 = line(-2*Q, -4*Q)
|
|
D19 = {"-2Q": 1, "-4Q": 1, "6Q": 1, "∞": -3}
|
|
|
|
# (6[Q] + [-2Q] + [-4Q] - 8[∞]) - ([-2Q] + [-4Q] + [6Q] - 3[∞])
|
|
# ==
|
|
# 6[Q] - [6Q] - 5[∞]
|
|
f20 = f18/f19
|
|
D20 = div_sub(D18, D19)
|
|
assert D20 == {
|
|
"Q": 6,
|
|
"6Q": -1,
|
|
"∞": -5
|
|
}
|
|
|
|
# [6Q] + [-6Q] - 2[∞]
|
|
f21 = line(6*Q, -6*Q)
|
|
D21 = {"6Q": 1, "-6Q": 1, "∞": -2}
|
|
|
|
# (6[Q] - [6Q] - 5[∞]) + ([6Q] + [-6Q] - 2[∞])
|
|
# ==
|
|
# 6[Q] + [-6Q] - 7[∞]
|
|
f22 = f20*f21
|
|
D22 = div_add(D20, D21)
|
|
assert D22 == {"Q": 6, "-6Q": 1, "∞": -7}
|
|
|
|
# [Q] + [-6Q] + [5Q] - 3[∞]
|
|
f23 = line(Q, -6*Q)
|
|
D23 = {"Q": 1, "-6Q": 1, "5Q": 1, "∞": -3}
|
|
|
|
# (6[Q] + [-6Q] - 7[∞]) - ([Q] + [-6Q] + [5Q] - 3[∞])
|
|
# ==
|
|
# 5[Q] - [5Q] - 4[∞]
|
|
f24 = f22/f23
|
|
D24 = div_sub(D22, D23)
|
|
assert D24 == {"Q": 5, "5Q": -1, "∞": -4}
|
|
|
|
# Now combine the result
|
|
f = f10*f24
|
|
D = div_add(D10, D24)
|
|
assert D == {
|
|
"P0": 1,
|
|
"P1": 2,
|
|
"P2": 3,
|
|
"Q": 5,
|
|
"∞": -11
|
|
}
|
|
|
|
f_numer = f.numerator().mod(eqn)
|
|
f_denom = f.denominator().mod(eqn)
|
|
# ZeroDivisionError
|
|
#DLog = dlog(f_numer)
|
|
|
|
assert f(x=P0[0], y=P0[1]) == 0
|
|
assert f(x=P1[0], y=P1[1]) == 0
|
|
assert f(x=P2[0], y=P2[1]) == 0
|
|
# Need to modify f because this is 0/0
|
|
#assert f(x=Q[0], y=Q[1]) == 0
|
|
|
|
f_denom *= f_denom(y=-y)
|
|
f_denom = K(f_denom.mod(eqn))
|
|
f_numer *= f_denom(y=-y)
|
|
f_numer = f_numer.mod(eqn)
|
|
f = f_numer / f_denom
|
|
print("Created f such that div(f) = D")
|
|
|
|
#Ps = [P0] + 2*[P1] + 3*[P2] + 5*[Q]
|
|
#D = construct_function(Ps)
|
|
#
|
|
#assert D(x=P0[0], y=P0[1]) == 0
|
|
#assert D(x=P1[0], y=P1[1]) == 0
|
|
#assert D(x=P2[0], y=P2[1]) == 0
|
|
#assert D(x=Q[0], y=Q[1]) == 0
|
|
|
|
# This will fail due to a bug in sage:
|
|
#DLog = dlog(D)
|
|
# ZeroDivisionError
|
|
#DLog = dlog_alt(f)
|
|
|
|
print("Random A₀, A₁")
|
|
[A0, A1] = [E.random_element() for _ in range(2)]
|
|
A2 = -(A0 + A1)
|
|
A0x, A0y = A0.xy()
|
|
A1x, A1y = A1.xy()
|
|
A2x, A2y = A2.xy()
|
|
λ = (A1y - A0y) / (A1x - A0x)
|
|
μ = A1y - λ*A1x
|
|
assert A2y - λ*A2x - μ == 0
|
|
|
|
f_a = K(f(y=0))
|
|
f_b = K((f - f_a)(y=1))
|
|
assert f_a + y*f_b == f
|
|
#deg_f = f_b.degree() + 1
|
|
|
|
f_A = 1
|
|
for Ai in [A0, A1, A2]:
|
|
Aix, Aiy = Ai.xy()
|
|
f_A *= f(x=Aix, y=Aiy)
|
|
print(f_A)
|
|
|
|
g = y - λ*x - μ
|
|
g_P = 1
|
|
for Pi, v in [(P0, 1), (P1, 2), (P2, 3), (Q, 5)]:
|
|
Pix, Piy = Pi.xy()
|
|
g_P *= -g(x=Pix, y=Piy)^v
|
|
print(g_P)
|
|
|