Files
darkfi/script/research/ec/old/val2.py
2022-10-25 11:15:08 +00:00

196 lines
4.5 KiB
Python

import itertools
import numpy as np
import pickle
# V: y^2 = x^3 + 4x
# P = (2, 4)
# f = y - 2x
# V = span{1, x, x^2, y, xy, x^2 y}
# multiply polynomials
# perform reduction
K = 11
dim_x = 3
dim_y = 2
n = dim_x*dim_y
P = Px, Py = 2, 4
V = [
[0, 7, 0, 10, 0, 0],
[0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]
]
coeffs = [list(range(K))]*dim_x
x_vals = list(itertools.product(*coeffs))
y_vals = x_vals[:]
ring = list(itertools.product(x_vals, y_vals))
#for idx in range(0, len(ring), 10):
# print(ring[idx:idx + 10])
def call(poly, point):
x, y = point
result = 0
for j, row in enumerate(poly):
for i, a in enumerate(row):
v = a * x**i * y**j
#print(f'{a} x^{i} y^{j} = {a} {x**i} {y**j} = {v}')
result += v
return result % K
p = [[2, 7, 0], [6, 7, 0]]
assert call(p, (2, 4)) == 8
p = [[1, 2, 0], [0, 0, 3]]
assert call(p, (6, 3)) == 7
def sub(poly_a, poly_b):
c = []
for row_a, row_b in zip(poly_a, poly_b):
c_row = [(a - b) % K for (a, b) in zip(row_a, row_b)]
c.append(c_row)
return c
def add(poly_a, poly_b):
c = []
for row_a, row_b in zip(poly_a, poly_b):
c_row = [(a + b) % K for (a, b) in zip(row_a, row_b)]
c.append(c_row)
return c
a = [[4, 2, 3], [6, 0, 2]]
b = [[2, 1, 2], [9, 3, 4]]
assert sub(a, b) == [[2, 1, 1], [8, 8, 9]]
def _expand_double(poly):
assert len(poly) > 0
x_size = len(poly[0])
return [[0]*2*x_size]*2*len(poly)
def _copy_double(poly):
assert len(poly) > 0
x_size = len(poly[0])
return [row[:] + [0]*x_size for row in poly] + [[0]*2*x_size]*len(poly)
def _mul_x(poly):
p = []
for row in poly:
p.append([0] + row[:-1])
return p
def _mul_y(p):
assert len(p) > 0
x_size = len(p[0])
return [[0]*x_size] + p[:-1]
def _mul_const(p, c):
return [[p*c % K for p in row] for row in p]
def mul(a, b):
result = _expand_double(a)
for j, row in enumerate(b):
for i, c in enumerate(row):
# c x^i y^j
v = _copy_double(a)
v = _mul_const(v, c)
for _ in range(i):
v = _mul_x(v)
for _ in range(j):
v = _mul_y(v)
result = add(result, v)
return result
#print(_expand_double(a))
#print(_mul_x(_expand_double(a)))
#print(_mul_y(_expand_double(a)))
#print(_mul_const(_expand_double(a), 2))
a = [[4, 2, 3], [6, 0, 2]]
b = [[2, 1, 2], [9, 3, 4]]
ab = mul(a, b)
assert ab == [
[8, 8, 5, 7, 6, 0], [4, 3, 10, 8, 5, 0],
[10, 7, 9, 6, 8, 0], [0, 0, 0, 0, 0, 0]
]
def max_monomial(p):
degree = 0
pos = 0, 0
coeff = 0
for j, row in enumerate(p):
for i, c in enumerate(row):
if c == 0:
continue
current_deg = i + j
if current_deg > degree:
degree = current_deg
pos = i, j
coeff = c
return coeff, pos
def deg(p):
_, pos = max_monomial(p)
return sum(pos)
assert deg([[0, 0, 0], [0, 0, 0]]) == 0
assert deg([[1, 0, 0], [0, 0, 0]]) == 0
assert deg([[0, 1, 0], [0, 0, 0]]) == 1
assert deg([[0, 0, 0], [1, 0, 0]]) == 1
assert deg([[0, 0, 1], [1, 0, 0]]) == 2
assert deg([[0, 0, 0], [0, 0, 1]]) == 3
assert deg([[0, 0, 0], [0, 0, 1], [0, 0, 1]]) == 4
def invert(b):
n = 11
(x0, x1, y0, y1) = (1, 0, 0, 1)
while n != 0:
q = b // n
b = n
n = b % n
(x0, x1) = (x1, x0 - q * x1)
(y0, y1) = (y1, y0 - q * y1)
return b, x0, y0
def _extended_euclid(a, b):
if a == 0 :
return 0, 1
x1, y1 = _extended_euclid(b % a, a)
# Update x and y using results of recursive call
x = y1 - (b//a) * x1
y = x1
return x, y
def invert(x):
return _extended_euclid(x, K)[0] % K
assert 5 * invert(5) % K == 1
assert 3 * invert(3) % K == 1
assert 7 * invert(7) % K == 1
def __reduce(p, q):
q_deg_x, q_deg_y = deg_x(q), deg_y(q)
r = [row[:] for row in p]
for j in range(len(r) - 1, -1, -1):
row = r[j]
for i in range(len(row)):
c = row[i]
if c == 0:
continue
term = [[0]*len(row) for _ in r]
# TODO
return r
#print(reduce(ab, V))
#ring_valid_denoms = list(filter(lambda g: call(g, P) != 0, ring))
#
#local_ring = []
#for f1 in ring:
# for g1 in ring_valid_denoms:
# is_unique = True
# for (f2, g2) in local_ring:
# # Test: f1 g2 - f2 g1 in I
# f1g2 = mul(f1, g2)
# f2g1 = mul(f2, g1)
# fg_fg = sub(f1g2, f2g1)