Files
darkfi/script/research/lotterysim/acc_vs_staked_ratio_pi_headstart.py
2023-07-17 15:36:27 +03:00

40 lines
1.4 KiB
Python

from core.lottery import *
import os
import numpy
from matplotlib import pyplot as plt
os.system("rm log/f_output.hist; rm log/f_feedback.hist")
RUNNING_TIME = int(input("running time:"))
ERC20DRK=2.1*10**9
NODES=1000
plot = []
EXPS=10
for nodes in numpy.concatenate((numpy.array([1,5]), numpy.linspace(10,NODES, 10))):
accs = []
for _ in range(EXPS):
darkies = []
egalitarian = ERC20DRK/NODES
darkies += [ Darkie(random.gauss(0, 0), strategy=random_strategy(EPOCH_LENGTH)) for id in range(int(nodes)) ]
airdrop = ERC20DRK
dt = DarkfiTable(0, RUNNING_TIME, CONTROLLER_TYPE_DISCRETE, kp=-0.0104, ki=-0.0366, kd=0.0384, r_kp=-2.53, r_ki=29.5, r_kd=53.77)
for darkie in darkies:
dt.add_darkie(darkie)
acc, apy, reward, staked_ratio, apr = dt.background(rand_running_time=False)
accs += [acc]
effective_airdrop = 0
for darkie in darkies:
effective_airdrop+=darkie.stake
effective_airdrop*=float(staked_ratio)
stake_portion = effective_airdrop/airdrop*100
print("network airdrop: {}, staked token: {}/{}% on {} nodes".format(airdrop, effective_airdrop, stake_portion, len(darkies)))
avg_acc = sum(accs)/EXPS
plot+=[(stake_portion, avg_acc)]
plt.plot([x[0] for x in plot], [x[1] for x in plot])
plt.xlabel('drk staked %')
plt.ylabel('accuracy %')
plt.savefig('img'+os.sep+'stake_pi.png')
plt.show()