Files
darkfi/example/tx.rs
2022-10-31 18:16:13 +01:00

217 lines
7.1 KiB
Rust

/* This file is part of DarkFi (https://dark.fi)
*
* Copyright (C) 2020-2022 Dyne.org foundation
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
// Example transaction flow
use darkfi_sdk::crypto::{constants::MERKLE_DEPTH, MerkleNode, Nullifier};
use incrementalmerkletree::{bridgetree::BridgeTree, Tree};
use pasta_curves::{group::ff::Field, pallas};
use rand::rngs::OsRng;
use darkfi::{
crypto::{
coin::OwnCoin,
keypair::{Keypair, PublicKey, SecretKey},
note::{EncryptedNote, Note},
proof::{ProvingKey, VerifyingKey},
util::poseidon_hash,
},
node::state::{state_transition, ProgramState, StateUpdate},
tx::builder::{
TransactionBuilder, TransactionBuilderClearInputInfo, TransactionBuilderInputInfo,
TransactionBuilderOutputInfo,
},
zk::circuit::{BurnContract, MintContract},
Result,
};
/// The state machine, held in memory.
struct MemoryState {
/// The entire Merkle tree state
tree: BridgeTree<MerkleNode, MERKLE_DEPTH>,
/// List of all previous and the current Merkle roots.
/// This is the hashed value of all the children.
merkle_roots: Vec<MerkleNode>,
/// Nullifiers prevent double spending
nullifiers: Vec<Nullifier>,
/// All received coins
// NOTE: We need maybe a flag to keep track of which ones are
// spent. Maybe the spend field links to a tx hash:input index.
// We should also keep track of the tx hash:output index where
// this coin was received.
own_coins: Vec<OwnCoin>,
/// Verifying key for the mint zk circuit.
mint_vk: VerifyingKey,
/// Verifying key for the burn zk circuit.
burn_vk: VerifyingKey,
/// Public key of the cashier
cashier_signature_public: PublicKey,
/// Public key of the faucet
faucet_signature_public: PublicKey,
/// List of all our secret keys
secrets: Vec<SecretKey>,
}
impl ProgramState for MemoryState {
fn is_valid_cashier_public_key(&self, public: &PublicKey) -> bool {
public == &self.cashier_signature_public
}
fn is_valid_faucet_public_key(&self, public: &PublicKey) -> bool {
public == &self.faucet_signature_public
}
fn is_valid_merkle(&self, merkle_root: &MerkleNode) -> bool {
self.merkle_roots.iter().any(|m| m == merkle_root)
}
fn nullifier_exists(&self, nullifier: &Nullifier) -> bool {
self.nullifiers.iter().any(|n| n == nullifier)
}
fn mint_vk(&self) -> &VerifyingKey {
&self.mint_vk
}
fn burn_vk(&self) -> &VerifyingKey {
&self.burn_vk
}
}
impl MemoryState {
fn apply(&mut self, mut update: StateUpdate) {
// Extend our list of nullifiers with the ones from the update
self.nullifiers.append(&mut update.nullifiers);
// Update merkle tree and witnesses
for (coin, enc_note) in update.coins.into_iter().zip(update.enc_notes.into_iter()) {
// Add the new coins to the Merkle tree
let node = MerkleNode::from(coin.0);
self.tree.append(&node);
// Keep track of all Merkle roots that have existed
self.merkle_roots.push(self.tree.root(0).unwrap());
// If it's our own coin, witness it and append to the vector.
if let Some((note, secret)) = self.try_decrypt_note(enc_note) {
let leaf_position = self.tree.witness().unwrap();
let nullifier = Nullifier::from(poseidon_hash::<2>([secret.inner(), note.serial]));
let own_coin = OwnCoin { coin, note, secret, nullifier, leaf_position };
self.own_coins.push(own_coin);
}
}
}
fn try_decrypt_note(&self, ciphertext: EncryptedNote) -> Option<(Note, SecretKey)> {
// Loop through all our secret keys...
for secret in &self.secrets {
// .. attempt to decrypt the note ...
if let Ok(note) = ciphertext.decrypt(secret) {
// ... and return the decrypted note for this coin.
return Some((note, *secret))
}
}
// We weren't able to decrypt the note with any of our keys.
None
}
}
fn main() -> Result<()> {
let cashier_signature_secret = SecretKey::random(&mut OsRng);
let cashier_signature_public = PublicKey::from_secret(cashier_signature_secret);
let faucet_signature_secret = SecretKey::random(&mut OsRng);
let faucet_signature_public = PublicKey::from_secret(faucet_signature_secret);
let keypair = Keypair::random(&mut OsRng);
let mint_vk = VerifyingKey::build(11, &MintContract::default());
let burn_vk = VerifyingKey::build(11, &BurnContract::default());
let mut state = MemoryState {
tree: BridgeTree::<MerkleNode, MERKLE_DEPTH>::new(100),
merkle_roots: vec![],
nullifiers: vec![],
own_coins: vec![],
mint_vk,
burn_vk,
cashier_signature_public,
faucet_signature_public,
secrets: vec![keypair.secret],
};
let token_id = pallas::Base::random(&mut OsRng);
let builder = TransactionBuilder {
clear_inputs: vec![TransactionBuilderClearInputInfo {
value: 110,
token_id,
signature_secret: cashier_signature_secret,
}],
inputs: vec![],
outputs: vec![TransactionBuilderOutputInfo {
value: 110,
token_id,
public: keypair.public,
}],
};
let mint_pk = ProvingKey::build(11, &MintContract::default());
let burn_pk = ProvingKey::build(11, &BurnContract::default());
let tx = builder.build(&mint_pk, &burn_pk)?;
tx.verify(&state.mint_vk, &state.burn_vk)?;
let _note = tx.outputs[0].enc_note.decrypt(&keypair.secret)?;
let update = state_transition(&state, tx)?;
state.apply(update);
// Now spend
let owncoin = &state.own_coins[0];
let note = &owncoin.note;
let leaf_position = owncoin.leaf_position;
let root = state.tree.root(0).unwrap();
let merkle_path = state.tree.authentication_path(leaf_position, &root).unwrap();
let builder = TransactionBuilder {
clear_inputs: vec![],
inputs: vec![TransactionBuilderInputInfo {
leaf_position,
merkle_path,
secret: keypair.secret,
note: note.clone(),
}],
outputs: vec![TransactionBuilderOutputInfo {
value: 110,
token_id,
public: keypair.public,
}],
};
let tx = builder.build(&mint_pk, &burn_pk)?;
let update = state_transition(&state, tx)?;
state.apply(update);
Ok(())
}