Files
darkfi/script/research/mpc/curve.sage

55 lines
1.7 KiB
Python

# stark curve https://docs.starkware.co/starkex/crypto/stark-curve.html
p = 3618502788666131213697322783095070105623107215331596699973092056135872020481
alpha = 1
# $$y^2 = x^3 + \alpha \dot x + \beta$$ (mod p)
beta = 3141592653589793238462643383279502884197169399375105820974944592307816406665
F = GF(p)
E = EllipticCurve(F, [alpha,beta])
ec_order = E.order()
# ECDSA scheme generator
G_generator = E(874739451078007766457464989774322083649278607533249481151382481072868806602, 152666792071518830868575557812948353041420400780739481342941381225525861407)
p_scalar = 3618502788666131213697322783095070105526743751716087489154079457884512865583
K = GF(p_scalar)
import random
class CurvePoint():
def __init__(self, x=None, y=None):
if x==None or y==None:
self.point = CurvePoint.random()
else:
self.point = E(x,y)
self.x = self.point[0]
self.y = self.point[1]
def zero():
return G_generator * 0
def __repr__(self):
return bytes("[ x: {}, y: {}, z: 1]".format(self.x, self.y), encoding='utf-8')
def __str__(self):
return self.__repr__()
def random(max=p):
return G_generator * random.randint(0, max)
def __add__(self, rhs):
return self.point + rhs.point
def __sub__(self, rhs):
return self.point - rhs.point
def __neg__(self):
return -1 * self.point
def generator():
return G_generator
def __mul__(self, factor):
return factor * self.point
def msm(points, scalars):
assert len(points) == len(scalars), 'len(p): {}, len(s): {}'.format(len(points), len(scalars))
return sum([s*p for (s, p) in zip(points, scalars)])