Files
darkfi/script/research/halo/test.py
2021-09-16 12:07:51 +02:00

117 lines
3.7 KiB
Python

import random
import misc
import pasta
from polynomial_evalrep import make_polynomial_evalrep
n = 8
omega_base = misc.get_omega(pasta.fp, 2**32, seed=0)
assert misc.is_power_of_two(8)
omega = omega_base ** (2 ** 32 // n)
# Order of omega is n
assert omega ** n == 1
# Compute complete roots of this group
ROOTS = [omega ** i for i in range(n)]
PolyEvalRep = make_polynomial_evalrep(pasta.fp, omega, n)
import numpy as np
from tabulate import tabulate
# Wires
a = ["x", "v1", "v2", "1", "1", "v3", "e1", "e2"]
b = ["x", "x", "x", "5", "35", "5", "e3", "e4"]
c = ["v1", "v2", "v3", "5", "35", "35", "e5", "e6"]
wires = a + b + c
# Gates
# La + Rb + Oc + Mab + C = 0
add = np.array([1, 1, 0, -1, 0])
mul = np.array([0, 0, 1, -1, 0])
const5 = np.array([0, 1, 0, 0, -5])
public_input = np.array([0, 1, 0, 0, 0])
empty = np.array([0, 0, 0, 0, 0])
gates_matrix = np.array(
[mul, mul, add, const5, public_input, add, empty, empty])
print("Wires:")
print(tabulate([["a ="] + a, ["b ="] + b, ["c ="] + c]))
print()
print("Gates:")
print(gates_matrix)
print()
# The index of the public input in the gates_matrix
# We specify its position and its value
public_input_values = [(4, 35)]
def permute_indices(wires):
size = len(wires)
permutation = [i + 1 for i in range(size)]
for i in range(size):
for j in range(i + 1, size):
if wires[i] == wires[j]:
permutation[i], permutation[j] = permutation[j], permutation[i]
break
return permutation
permutation = permute_indices(wires)
table = [
["Wires"] + wires,
["Indices"] + list(i + 1 for i in range(len(wires))),
["Permutations"] + permutation
]
print(tabulate(table))
print()
import misc
from pasta import fp
def setup(wires, gates_matrix):
# Section 8.1
# The selector polynomials that define the circuit's arithmetisation
gates_matrix = gates_matrix.transpose()
ql = PolyEvalRep(ROOTS, [fp(i) for i in gates_matrix[0]])
qr = PolyEvalRep(ROOTS, [fp(i) for i in gates_matrix[1]])
qm = PolyEvalRep(ROOTS, [fp(i) for i in gates_matrix[2]])
qo = PolyEvalRep(ROOTS, [fp(i) for i in gates_matrix[3]])
qc = PolyEvalRep(ROOTS, [fp(i) for i in gates_matrix[4]])
selector_polys = [ql, qr, qm, qo, qc]
public_input = [fp(0) for i in range(len(ROOTS))]
for (index, value) in public_input_values:
# This is negative because the value is added to
# the output of the const selector poly:
# La + Rb + Oc + Mab + (C + PI) = 0
public_input[index] = fp(-value)
public_input_poly = PolyEvalRep(ROOTS, public_input)
# Identity permutations applied to a, b, c
# Ideally H, k_1 H, k_2 H are distinct cosets of H
# Here we just sample k and assume it's high-order
# Random high order k to form distinct cosets
k = misc.sample_random(fp)
id_domain_a = ROOTS
id_domain_b = [k * root for root in ROOTS]
id_domain_c = [k**2 * root for root in ROOTS]
id_domain = id_domain_a + id_domain_b + id_domain_c
# Intermediate step where we permute the positions of the domain
# generated above
permuted_domain = [id_domain[i - 1] for i in permutation]
permuted_domain_a = permuted_domain[:n]
permuted_domain_b = permuted_domain[n:2 * n]
permuted_domain_c = permuted_domain[2*n:3 * n]
# The copy permuation applied to a, b, c
# Returns the permuted index value (corresponding root of unity coset)
# when evaluated on the domain.
ssigma_1 = PolyEvalRep(ROOTS, permuted_domain_a)
ssigma_2 = PolyEvalRep(ROOTS, permuted_domain_b)
ssigma_3 = PolyEvalRep(ROOTS, permuted_domain_c)
copy_permutes = [ssigma_1, ssigma_2, ssigma_3]
setup(wires, gates_matrix)