Files
darkfi/bin/dao/daod/demo/crypto.py

159 lines
5.0 KiB
Python

import hashlib
import random
def ff_inv(a, p):
a %= p
# extended euclidean algorithm
# ps + at = 1
t = 0
new_t = 1
r = p
new_r = a
while new_r != 0:
quotient = r // new_r
t, new_t = new_t, t - quotient * new_t
r, new_r = new_r, r - quotient * new_r
assert r == 1
if t < 0:
t += p
return t
class EllipticCurve:
def __init__(self, p, A, B, order, G, H, J):
self.p = p
self.A = A
self.B = B
self.order = order
self.G = G
self.H = H
self.J = J
assert self.is_valid(G)
assert self.is_valid(H)
def is_valid(self, P):
x, y, z = P
if z == 0:
return x != 0 or y != 0
z_inv = ff_inv(z, self.p)
x, y = x * z_inv, y * z_inv
return y**2 % self.p == (x**3 + self.A * x + self.B) % self.p
def add(self, p1, p2):
x1, y1, z1 = p1
x2, y2, z2 = p2
if z1 == 0:
return (x2, y2, z2)
elif z2 == 0:
return (x1, y1, z1)
if x1 == x2:
if y1 != y2:
return (0, 1, 0)
assert y1 != 0
m = (3 * x1**2 + self.A) * ff_inv(2*y1, self.p)
else:
m = (y2 - y1) * ff_inv(x2 - x1, self.p)
x3 = (m**2 - x1 - x2) % self.p
y3 = (m * (x1 - x3) - y1) % self.p
return (x3, y3, 1)
def multiply(self, m, p):
bits = f"{m:b}"
result = (0, 1, 0)
temp = p
for bit in bits[::-1]:
if bit == "1":
result = self.add(result, temp)
temp = self.add(temp, temp)
return result
def random_point(self):
m = self.random_scalar()
return self.multiply(m, self.G)
def random_scalar(self):
m = random.randrange(0, self.order - 1)
return m
def random_base(self):
m = random.randrange(0, self.p - 1)
return m
def pallas_curve():
# Pallas
p = 0x40000000000000000000000000000000224698fc094cf91b992d30ed00000001
q = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001
G = (5, 5392431450607408583390510508521091931943415030464003135511088002453056875732, 1)
H = (9762257241998025279988087154025308614062019274413483967640476725944341089207,
12058632856930756995627167820351407063813260358041446014729496773111030695755, 1)
J = (7795559447963065356059848000022900528974048197507738248625163674930282081839,
5156492880772775379342191094371887365795329446468828588866320184016504353483, 1)
ec = EllipticCurve(p, 0, 5, q, G, H, J)
A = (144931808354919915876542440378319484704499556634959420306426167479163065488,
2699682121356767698440748624399854659825391162912545787181017961871465868196, 1)
B = (16017037670495191561606513965775243786961447026019262496667491008912834496943,
20395164507282344548629891414360366999207473153143014512687861307997120664849, 1)
assert ec.add(A, B) == (2414658659502531855741199170408914396997834981355655923471364687102714431309, 21133344194418979683767005688724798091220515434220043854575260979109407444719, 1)
m = 26322809409216846271933211244226061368157231119725763192402071651286829040466
assert ec.multiply(m, G) == (15862887453366837597569434439063150886012590021428640083047997467990450633825, 25887284719793568129480941070850220101898092026705204234126448799557008384178, 1)
return ec
def pedersen_encrypt(x, y, ec):
vcv = ec.multiply(x, ec.G)
vcr = ec.multiply(y, ec.H)
return ec.add(vcv, vcr)
def _add_to_hasher(hasher, args):
for arg in args:
match arg:
case int() as arg:
hasher.update(arg.to_bytes(32, byteorder="little"))
case bytes() as arg:
hasher.update(arg)
case list() as arg:
_add_to_hasher(hasher, arg)
case _:
raise Exception(f"unknown hash arg '{arg}' type: {type(arg)}")
def ff_hash(p, *args):
hasher = hashlib.sha256()
_add_to_hasher(hasher, args)
value = int.from_bytes(hasher.digest(), byteorder="little")
return value % p
def hash_point(point, message=None):
hasher = hashlib.sha256()
for x_i in point:
hasher.update(x_i.to_bytes(32, byteorder="little"))
# Optional message
if message is not None:
hasher.update(message)
value = int.from_bytes(hasher.digest(), byteorder="little")
return value
def sign(message, secret, ec):
ephem_secret = ec.random_scalar()
ephem_public = ec.multiply(ephem_secret, ec.G)
challenge = hash_point(ephem_public, message) % ec.order
response = (ephem_secret + challenge * secret) % ec.order
return ephem_public, response
def verify(message, signature, public, ec):
ephem_public, response = signature
challenge = hash_point(ephem_public, message) % ec.order
# sG
lhs = ec.multiply(response, ec.G)
# R + cP
rhs_cP = ec.multiply(challenge, public)
rhs = ec.add(ephem_public, rhs_cP)
return lhs == rhs