Files
darkfi/script/research/bulletproof-mpc/proof.sage

175 lines
7.3 KiB
Python

'''
bulletproof protocol 2 with multi-exponentiation.
'''
load('../mpc/curve.sage')
load('../mpc/beaver.sage')
load('utils.sage')
class Proof(object):
def __init__(self, transcript, Q, G_factors, H_factors, G, H, a, b):
'''
create inner product proof
'''
self.source = Source(p)
n = len(G)
assert (n == len(H) == len(H_factors) == len(a) == len(b))
L_l = []
R_l = []
if n!=1:
n /=2
a_l, a_r = a[0:n], a[n:]
b_l, b_r = b[0:n], b[n:]
G_l, G_r = G[0:n], G[n:]
H_l, H_r = H[0:n], H[n:]
c_l = [sum([a*b for a,b in zip(a_l, b_r)])]
c_r = [sum([a*b for a,b in zip(a_r, b_l)])]
al_g = [al*g for al, g in zip(a_l, G_factors[n:2*n])]
br_h = [br*h for br,h in zip(b_r, H_factors[0:n])]
L_gr_al_g = CurvePoint.msm(G_r, al_g)
print("L_gr_al_g: {}".format(L_gr_al_g))
L_hl_br_h = CurvePoint.msm(H_l, br_h)
print("L_hl_br_h: {}".format(L_hl_br_h))
print('C_L: {}'.format(c_l))
L_q_cl = CurvePoint.msm(Q, c_l)
print("L_q_cl: {}".format(L_q_cl))
# L, R
# note that P = L*R
L = [sum([L_gr_al_g, L_hl_br_h , L_q_cl])]
R_gl_ar_g = CurvePoint.msm(G_l, [ar*g for ar, g in zip(a_r, G_factors[0:n])])
print("R_gl_ar_g: {}".format(R_gl_ar_g))
R_hr_bl_h = CurvePoint.msm(H_r, [bl*h for bl,h in zip(b_l, H_factors[n:2*n])])
print("R_hr_bl_h: {}".format(R_hr_bl_h))
print('C_R: {}'.format(c_r))
R_q_cr = CurvePoint.msm(Q, c_r)
print('R_q_cr: {}'.format(R_q_cr))
R = [sum([R_gl_ar_g, R_hr_bl_h, R_q_cr])]
L_l += L
R_l += R
# choose true random challenges u, u^{-1}
transcript.append_message(b'L', bytes(''.join([l.__str__() for l in L]), encoding='utf-8'))
transcript.append_message(b'R', bytes(''.join([r.__str__() for r in R]), encoding='utf-8'))
u = K(transcript.challenge_bytes(b'u'))
#u = K(1)
u_inv = 1/u
for i in range(n):
# a_prime
a_l[i] = a_l[i] * u + u_inv * a_r[i]
# p_prime
b_l[i] = b_l[i] * u_inv + u * b_r[i]
# G_prime
G_l[i] = CurvePoint.msm([G_l[i], G_r[i]], [u_inv * G_factors[i], u * G_factors[n+i]])
# H_prime
H_l[i] = CurvePoint.msm([H_l[i], H_r[i]], [u * H_factors[i], u_inv * H_factors[n+i]])
a = a_l # a is a_prime
b = b_l # b is b_prime
G = G_l # G is G_prime
H = H_l # H is H_prime
while n!=1:
n /=2
a_l, a_r = a[0:n], a[n:] # a_prime_l, a_prime_r
b_l, b_r = b[0:n], b[n:] # b_prime_l, b_prime_r
G_l, G_r = G[0:n], G[n:] # G_prime_l, G_prime_r
H_l, H_r = H[0:n], H[n:] # H_prime_l, H_prime_r
c_l = [sum([a*b for (a,b) in zip(a_l, b_r)])] # c_prime_l
c_r = [sum([a*b for (a,b) in zip(a_r, b_l)])] # c_prime_r
# L_prime
L = [sum([CurvePoint.msm(G_r, a_l), CurvePoint.msm(H_l, b_r), CurvePoint.msm(Q, c_l)])]
# R_prime
R = [sum([CurvePoint.msm(G_l, a_r), CurvePoint.msm(H_r, b_l), CurvePoint.msm(Q, c_r)])]
L_l += L
R_l += R
# choose true random challenges u, u^{-1]}
transcript.append_message(b'L', bytes(''.join([l.__str__() for l in L]), encoding='utf-8'))
transcript.append_message(b'R', bytes(''.join([r.__str__() for r in R]), encoding='utf-8'))
u = K(transcript.challenge_bytes(b'u'))
#u = K(1)
u_inv = 1/u
for i in range(n):
# u * a_prime_l + u^{-1} * a_prime_r
a_l[i] = a_l[i] * u + u_inv * a_r[i]
# u^{-1} * b_prime_l + u * b_prime_r
b_l[i] = b_l[i] * u_inv + u * b_r[i]
# G_l_prime
G_l[i] = CurvePoint.msm([G_l[i], G_r[i]], [u_inv, u])
# H_l_prime
H_l[i] = CurvePoint.msm([H_l[i], H_r[i]], [u, u_inv])
a = a_l
b = b_l
G = G_l
H = H_l
#
self.lhs = L_l
self.rhs = R_l
self.a = a[0]
self.b = b[0]
print("L: {}".format(self.lhs))
print('R: {}'.format(self.rhs))
def challenges(self, n, verifier):
challenges = []
challenges_inv = []
lg_n = len(self.lhs)
for L, R in zip(self.lhs, self.rhs):
#verifier.append_message(b'L', bytes(''.join([l.__str__() for l in [L]]), encoding='utf-8'))
#verifier.append_message(b'R', bytes(''.join([r.__str__() for r in [R]]), encoding='utf-8'))
#u = K(verifier.challenge_bytes(b'u'))
u = K(1)
u_inv = 1/u
challenges += [u]
challenges_inv += [1/u]
inv_prod = K(1)
for u_inv in challenges_inv:
inv_prod *=K(1)
challenges_sq = [i*i for i in challenges]
challenges_inv_sq = [i*i for i in challenges_inv]
mul_inv = K(1)
for i in challenges_inv:
mul_inv *=i
S = [mul_inv]
for i in range(1,n):
lg_i = 32 - 1 - countZeros(i)
k = 1 << lg_i
u_lg_i_sq = challenges_sq[(lg_n -1) - lg_i]
S += [S[i-k] * u_lg_i_sq]
return challenges_sq, challenges_inv_sq, S
def verify(self, n, verifier, G_factors, H_factors, P, Q, G, H):
u_sq, u_inv_sq, s = self.challenges(n, verifier)
g_times_a_times_s = [self.a * s_i * g_i for g_i, s_i in zip(G_factors, s)][:n]
# inverse of count is reverse
inv_s = reversed(s)
h_times_b_div_s = [self.b * s_i_inv * h_i for h_i, s_i_inv in zip(H_factors, inv_s)]
neg_u_sq = [i*K(-1) for i in u_sq]
neg_u_inv_sq = [i*K(-1) for i in u_inv_sq]
# P
## u^c
res_p_1 = CurvePoint.msm(Q, [self.a*self.b])
## g^{g_factor_a_s}
res_p_2 = CurvePoint.msm(G, g_times_a_times_s)
## h^{h_factor_b_s}
res_p_3 = CurvePoint.msm(H, h_times_b_div_s)
# L^(u^2)
res_p_4 = CurvePoint.msm(self.lhs, neg_u_sq)
# R^(u^-2)
res_p_5 = CurvePoint.msm(self.rhs, neg_u_inv_sq)
# P prime = L^{u^2} * P * R^{u^{-1}}
print('p_1: {}'.format(res_p_1))
print('p_2: {}'.format(res_p_2))
print('p_3: {}'.format(res_p_3))
print('p_4: {}'.format(res_p_4))
print('p_5: {}'.format(res_p_5))
res_p = res_p_1 + res_p_2 + res_p_3 + res_p_4 + res_p_5;
res = res_p == P
# P prime == H(u^{-1} * a_prime_r, u * a_prime_l, u * b_prime_r, u ^ {-1} * b_prime_l, c_prime)
assert (res), 'P: {}, expected P: {}'.format(res_p, P)
return res_p, P, res