# NOTE!!NOTE!!!NOTE!!NOTE!!!NOTE!!NOTE!!!NOTE!!NOTE!!! # THE WORD "CHAPTER" IN THE CODE DOES NOT MEAN # IT'S THE REAL CHAPTER OF THE EBOOK SINCE NO STANDARDS # ARE DEFINING A CHAPTER ON .EPUB FORMAT. THE WORD "BLOCK" # IS USED TO PRINT IT OUT TO THE TERMINAL, AND "CHAPTER" TO THE CODE # WHICH IS LESS GENERIC FOR THE DEVELOPERS from __future__ import annotations import argparse, asyncio, csv, fnmatch, hashlib, io, json, math, os, pytesseract, gc import platform, random, shutil, subprocess, sys, tempfile, threading, time, uvicorn import traceback, socket, unicodedata, urllib.request, uuid, zipfile, fitz import ebooklib, gradio as gr, psutil, regex as re, requests, stanza, importlib from typing import Any from PIL import Image, ImageSequence from tqdm import tqdm from bs4 import BeautifulSoup, NavigableString, Tag from collections import Counter from collections.abc import Mapping from collections.abc import MutableMapping from datetime import datetime from ebooklib import epub from ebooklib.epub import EpubBook from ebooklib.epub import EpubHtml from glob import glob from iso639 import Lang from markdown import markdown from multiprocessing import Pool, cpu_count from multiprocessing import Manager, Event from multiprocessing.managers import DictProxy, ListProxy from stanza.pipeline.core import Pipeline, DownloadMethod from num2words import num2words from pathlib import Path from PIL import Image from pydub import AudioSegment from pydub.utils import mediainfo from queue import Queue, Empty from types import MappingProxyType from langdetect import detect from unidecode import unidecode from phonemizer import phonemize from lib.classes.subprocess_pipe import SubprocessPipe from lib.classes.vram_detector import VRAMDetector from lib.classes.voice_extractor import VoiceExtractor from lib.classes.tts_manager import TTSManager #from lib.classes.redirect_console import RedirectConsole #from lib.classes.argos_translator import ArgosTranslator from lib import * #import logging #logging.basicConfig( # level=logging.INFO, # DEBUG for more verbosity # format="%(asctime)s [%(levelname)s] %(message)s" #) context = None context_tracker = None active_sessions = None class DependencyError(Exception): def __init__(self, message:str|None): super().__init__(message) print(message) # Automatically handle the exception when it's raised self.handle_exception() def handle_exception(self)->None: # Print the full traceback of the exception traceback.print_exc() # Print the exception message error = f'Caught DependencyError: {self}' print(error) class SessionTracker: def __init__(self): self.lock = threading.Lock() def start_session(self, id:str)->bool: with self.lock: session = context.get_session(id) if session['status'] is None: session['status'] = 'ready' return True return False def end_session(self, id:str, socket_hash:str)->None: active_sessions.discard(socket_hash) with self.lock: context.sessions.pop(id, None) class SessionContext: def __init__(self): self.manager:Manager = Manager() self.sessions:DictProxy[str, DictProxy[str, Any]] = self.manager.dict() self.cancellation_events = {} def _recursive_proxy(self, data:Any, manager:Manager|None)->Any: if manager is None: manager = Manager() if isinstance(data, dict): proxy_dict = manager.dict() for key, value in data.items(): proxy_dict[key] = self._recursive_proxy(value, manager) return proxy_dict elif isinstance(data, list): proxy_list = manager.list() for item in data: proxy_list.append(self._recursive_proxy(item, manager)) return proxy_list elif isinstance(data, (str, int, float, bool, type(None))): return data else: error = f'Unsupported data type: {type(data)}' print(error) return None def set_session(self, id:str)->Any: self.sessions[id] = self._recursive_proxy({ "script_mode": NATIVE, "id": id, "tab_id": None, "is_gui_process": False, "free_vram_gb": 0, "process_id": None, "status": None, "event": None, "progress": 0, "cancellation_requested": False, "device": default_device, "tts_engine": default_tts_engine, "fine_tuned": default_fine_tuned, "model_cache": None, "model_zs_cache": None, "stanza_cache": None, "system": None, "client": None, "language": default_language_code, "language_iso1": None, "audiobook": None, "audiobooks_dir": None, "process_dir": None, "ebook": None, "ebook_list": None, "ebook_mode": "single", "chapters_preview": default_chapters_preview, "chapters_dir": None, "chapters_dir_sentences": None, "epub_path": None, "filename_noext": None, "voice": None, "voice_dir": None, "custom_model": None, "custom_model_dir": None, "xtts_temperature": default_engine_settings[TTS_ENGINES['XTTSv2']]['temperature'], #"xtts_codec_temperature": default_engine_settings[TTS_ENGINES['XTTSv2']]['codec_temperature'], "xtts_length_penalty": default_engine_settings[TTS_ENGINES['XTTSv2']]['length_penalty'], "xtts_num_beams": default_engine_settings[TTS_ENGINES['XTTSv2']]['num_beams'], "xtts_repetition_penalty": default_engine_settings[TTS_ENGINES['XTTSv2']]['repetition_penalty'], #"xtts_cvvp_weight": default_engine_settings[TTS_ENGINES['XTTSv2']]['cvvp_weight'], "xtts_top_k": default_engine_settings[TTS_ENGINES['XTTSv2']]['top_k'], "xtts_top_p": default_engine_settings[TTS_ENGINES['XTTSv2']]['top_p'], "xtts_speed": default_engine_settings[TTS_ENGINES['XTTSv2']]['speed'], #"xtts_gpt_cond_len": default_engine_settings[TTS_ENGINES['XTTSv2']]['gpt_cond_len'], #"xtts_gpt_batch_size": default_engine_settings[TTS_ENGINES['XTTSv2']]['gpt_batch_size'], "xtts_enable_text_splitting": default_engine_settings[TTS_ENGINES['XTTSv2']]['enable_text_splitting'], "bark_text_temp": default_engine_settings[TTS_ENGINES['BARK']]['text_temp'], "bark_waveform_temp": default_engine_settings[TTS_ENGINES['BARK']]['waveform_temp'], "final_name": None, "output_format": default_output_format, "output_channel": default_output_channel, "output_split": default_output_split, "output_split_hours": default_output_split_hours, "metadata": { "title": None, "creator": None, "contributor": None, "language": None, "identifier": None, "publisher": None, "date": None, "description": None, "subject": None, "rights": None, "format": None, "type": None, "coverage": None, "relation": None, "Source": None, "Modified": None, }, "toc": None, "chapters": None, "cover": None, "duration": 0, "playback_time": 0, "playback_volume": 0 }, manager=self.manager) return self.sessions[id] def get_session(self, id:str)->Any: if id in self.sessions: return self.sessions[id] return False def find_id_by_hash(self, socket_hash:str)->str|None: for id, session in self.sessions.items(): if socket_hash in session: return session['id'] return None class JSONDictProxyEncoder(json.JSONEncoder): def default(self, o:Any)->Any: if isinstance(o, DictProxy): return dict(o) elif isinstance(o, ListProxy): return list(o) return super().default(o) def prepare_dirs(src:str, id:str)->bool: try: session = context.get_session(id) if session: resume = False os.makedirs(os.path.join(models_dir,'tts'), exist_ok=True) os.makedirs(session['session_dir'], exist_ok=True) os.makedirs(session['process_dir'], exist_ok=True) os.makedirs(session['custom_model_dir'], exist_ok=True) os.makedirs(session['voice_dir'], exist_ok=True) os.makedirs(session['audiobooks_dir'], exist_ok=True) os.makedirs(session['chapters_dir'], exist_ok=True) os.makedirs(session['chapters_dir_sentences'], exist_ok=True) session['ebook'] = os.path.join(session['process_dir'], os.path.basename(src)) shutil.copy(src, session['ebook']) return True except Exception as e: DependencyError(e) return False def check_programs(prog_name:str, command:str, options:str)->bool: try: subprocess.run( [command, options], stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True, text=True, encoding='utf-8' ) return True except FileNotFoundError: e = f'''********** Error: {prog_name} is not installed! if your OS calibre package version is not compatible you still can run ebook2audiobook.sh (linux/mac) or ebook2audiobook.cmd (windows) **********''' DependencyError(e) except subprocess.CalledProcessError: e = f'Error: There was an issue running {prog_name}.' DependencyError(e) return False def analyze_uploaded_file(zip_path:str, required_files:list[str])->bool: try: if not os.path.exists(zip_path): error = f'The file does not exist: {os.path.basename(zip_path)}' print(error) return False files_in_zip = {} empty_files = set() with zipfile.ZipFile(zip_path, 'r') as zf: for file_info in zf.infolist(): file_name = file_info.filename if file_info.is_dir(): continue base_name = os.path.basename(file_name) files_in_zip[base_name.lower()] = file_info.file_size if file_info.file_size == 0: empty_files.add(base_name.lower()) required_files = [file.lower() for file in required_files] missing_files = [f for f in required_files if f not in files_in_zip] required_empty_files = [f for f in required_files if f in empty_files] if missing_files: msg = f'Missing required files: {missing_files}' print(msg) if required_empty_files: msg = f'Required files with 0 KB: {required_empty_files}' print(msg) return not missing_files and not required_empty_files except zipfile.BadZipFile: error = 'The file is not a valid ZIP archive.' print(error) return False except Exception as e: error = f'An error occurred: {e}' print(error) return False def extract_custom_model(file_src:str, id, required_files:list)->str|None: session = context.get_session(id) if session: model_path = None model_name = re.sub('.zip', '', os.path.basename(file_src), flags=re.IGNORECASE) model_name = get_sanitized(model_name) try: with zipfile.ZipFile(file_src, 'r') as zip_ref: files = zip_ref.namelist() files_length = len(files) tts_dir = session['tts_engine'] model_path = os.path.join(session['custom_model_dir'], tts_dir, model_name) os.makedirs(model_path, exist_ok=True) required_files_lc = set(x.lower() for x in required_files) with tqdm(total=files_length, unit='files') as t: for f in files: base_f = os.path.basename(f).lower() if base_f in required_files_lc: out_path = os.path.join(model_path, base_f) with zip_ref.open(f) as src, open(out_path, 'wb') as dst: shutil.copyfileobj(src, dst) t.update(1) if model_path is not None: msg = f'Extracted files to {model_path}. Normalizing ref.wav...' print(msg) voice_ref = os.path.join(model_path, 'ref.wav') voice_output = os.path.join(model_path, f'{model_name}.wav') extractor = VoiceExtractor(session, voice_ref, voice_output) success, error = extractor.normalize_audio(voice_ref, voice_output, voice_output) if success: if os.path.exists(file_src): os.remove(file_src) if os.path.exists(voice_ref): os.remove(voice_ref) return model_path error = f'normalize_audio {voice_ref} error: {error}' print(error) else: error = f'An error occured when unzip {file_src}' except asyncio.exceptions.CancelledError as e: DependencyError(e) error = f'extract_custom_model asyncio.exceptions.CancelledError: {e}' print(error) except Exception as e: DependencyError(e) error = f'extract_custom_model Exception: {e}' print(error) if session['is_gui_process']: if os.path.exists(file_src): os.remove(file_src) return None def hash_proxy_dict(proxy_dict) -> str: try: data = dict(proxy_dict) except Exception: data = {} data_str = json.dumps(data, sort_keys=True, default=str) return hashlib.md5(data_str.encode("utf-8")).hexdigest() def calculate_hash(filepath, hash_algorithm='sha256'): hash_func = hashlib.new(hash_algorithm) with open(filepath, 'rb') as f: while chunk := f.read(8192): # Read in chunks to handle large files hash_func.update(chunk) return hash_func.hexdigest() def compare_dict_keys(d1, d2): if not isinstance(d1, Mapping) or not isinstance(d2, Mapping): return d1 == d2 d1_keys = set(d1.keys()) d2_keys = set(d2.keys()) missing_in_d2 = d1_keys - d2_keys missing_in_d1 = d2_keys - d1_keys if missing_in_d2 or missing_in_d1: return { "missing_in_d2": missing_in_d2, "missing_in_d1": missing_in_d1, } for key in d1_keys.intersection(d2_keys): nested_result = compare_keys(d1[key], d2[key]) if nested_result: return {key: nested_result} return None def ocr2xhtml(img: Image.Image, lang: str) -> str: try: debug = True try: data = pytesseract.image_to_data(img, lang=lang, output_type=pytesseract.Output.DATAFRAME) # Handle silent OCR failures (empty or None result) if data is None or data.empty: error = f'Tesseract returned empty OCR data for language "{lang}".' print(error) return False except (pytesseract.TesseractError, Exception) as e: print(f'The OCR {lang} trained model must be downloaded.') try: tessdata_dir = os.environ['TESSDATA_PREFIX'] os.makedirs(tessdata_dir, exist_ok=True) url = f'https://github.com/tesseract-ocr/tessdata_best/raw/main/{lang}.traineddata' dest_path = os.path.join(tessdata_dir, f'{lang}.traineddata') msg = f'Downloading {lang}.traineddata into {tessdata_dir}...' print(msg) response = requests.get(url, timeout=15) if response.status_code == 200: with open(dest_path, 'wb') as f: f.write(response.content) msg = f'Downloaded and installed {lang}.traineddata successfully.' print(msg) data = pytesseract.image_to_data(img, lang=lang, output_type=pytesseract.Output.DATAFRAME) if data is None or data.empty: error = f'Tesseract returned empty OCR data even after downloading {lang}.traineddata.' print(error) return False else: error = f'Failed to download traineddata for {lang} (HTTP {response.status_code})' print(error) return False except Exception as e: error = f'Automatic download failed: {e}' print(error) return False data = data.dropna(subset=['text']) lines = [] last_block = None for _, row in data.iterrows(): text = row['text'].strip() if not text: continue block = row['block_num'] if last_block is not None and block != last_block: lines.append('') # blank line between blocks lines.append(text) last_block = block joined = '\n'.join(lines) raw_lines = [l.strip() for l in joined.split('\n')] # Normalize line breaks merged_lines = [] buffer = '' for i, line in enumerate(raw_lines): if not line: if buffer: merged_lines.append(buffer.strip()) buffer = '' continue if buffer and not buffer.endswith(('.', '?', '!', ':')) and not line[0].isupper(): buffer += ' ' + line else: if buffer: merged_lines.append(buffer.strip()) buffer = line if buffer: merged_lines.append(buffer.strip()) # Detect heading-like lines xhtml_parts = [] debug_dump = [] for i, p in enumerate(merged_lines): is_heading = False if p.isupper() and len(p.split()) <= 8: is_heading = True elif len(p.split()) <= 5 and p.istitle(): is_heading = True elif (i == 0 or (i > 0 and merged_lines[i-1] == '')) and len(p.split()) <= 10: is_heading = True if is_heading: xhtml_parts.append(f'

{p}

') debug_dump.append(f'[H2] {p}') else: xhtml_parts.append(f'

{p}

') debug_dump.append(f'[P ] {p}') if debug: print('=== OCR DEBUG OUTPUT ===') for line in debug_dump: print(line) print('========================') return '\n'.join(xhtml_parts) except Exception as e: DependencyError(e) error = f'ocr2xhtml error: {e}' print(error) return False def convert2epub(id:str)-> bool: session = context.get_session(id) if session: if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return False try: title = False author = False util_app = shutil.which('ebook-convert') if not util_app: error = 'ebook-convert utility is not installed or not found.' print(error) return False file_input = session['ebook'] if os.path.getsize(file_input) == 0: error = f'Input file is empty: {file_input}' print(error) return False file_ext = os.path.splitext(file_input)[1].lower() if file_ext not in ebook_formats: error = f'Unsupported file format: {file_ext}' print(error) return False if file_ext == '.txt': with open(file_input, 'r', encoding='utf-8') as f: text = f.read() text = text.replace('\r\n', '\n') text = re.sub(r'\n{2,}', '.[pause]', text) with open(file_input, 'w', encoding='utf-8') as f: f.write(text) elif file_ext == '.pdf': msg = 'File input is a PDF. flatten it in XHTML...' print(msg) doc = fitz.open(file_input) file_meta = doc.metadata filename_no_ext = os.path.splitext(os.path.basename(session['ebook']))[0] title = file_meta.get('title') or filename_no_ext author = file_meta.get('author') or False xhtml_pages = [] for i, page in enumerate(doc): try: text = page.get_text('xhtml').strip() except Exception as e: print(f'Error extracting text from page {i+1}: {e}') text = '' if not text: msg = f'The page {i+1} seems to be image-based. Using OCR...' print(msg) if session['is_gui_process']: show_alert({"type": "warning", "msg": msg}) pix = page.get_pixmap(dpi=300) img = Image.open(io.BytesIO(pix.tobytes('png'))) xhtml_content = ocr2xhtml(img, session['language']) else: xhtml_content = text if xhtml_content: xhtml_pages.append(xhtml_content) if xhtml_pages: xhtml_body = '\n'.join(xhtml_pages) xhtml_text = ( '\n' '\n' '\n' f'\n{title}\n' '\n' '\n' f'{xhtml_body}\n' '\n' '\n' ) file_input = os.path.join(session['process_dir'], f'{filename_no_ext}.xhtml') with open(file_input, 'w', encoding='utf-8') as html_file: html_file.write(xhtml_text) else: return False elif file_ext in ['.png', '.jpg', '.jpeg', '.tif', '.tiff', '.bmp']: filename_no_ext = os.path.splitext(os.path.basename(session['ebook']))[0] msg = f'File input is an image ({file_ext}). Running OCR...' print(msg) img = Image.open(file_input) xhtml_pages = [] page_count = 0 for i, frame in enumerate(ImageSequence.Iterator(img)): page_count += 1 frame = frame.convert('RGB') xhtml_content = ocr2xhtml(frame, session['language']) xhtml_pages.append(xhtml_content) if xhtml_pages: xhtml_body = '\n'.join(xhtml_pages) xhtml_text = ( '\n' '\n' '\n' f'\n{filename_no_ext}\n' '\n' '\n' f'{xhtml_body}\n' '\n' '\n' ) file_input = os.path.join(session['process_dir'], f'{filename_no_ext}.xhtml') with open(file_input, 'w', encoding='utf-8') as html_file: html_file.write(xhtml_text) print(f'OCR completed for {page_count} image page(s).') else: return False msg = f"Running command: {util_app} {file_input} {session['epub_path']}" print(msg) cmd = [ util_app, file_input, session['epub_path'], '--input-encoding=utf-8', '--output-profile=generic_eink', '--epub-version=3', '--flow-size=0', '--chapter-mark=pagebreak', '--page-breaks-before', "//*[name()='h1' or name()='h2' or name()='h3' or name()='h4' or name()='h5']", '--disable-font-rescaling', '--pretty-print', '--smarten-punctuation', '--verbose' ] if title: cmd += ['--title', title] if author: cmd += ['--authors', author] result = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, encoding='utf-8' ) print(result.stdout) return True except subprocess.CalledProcessError as e: DependencyError(e) error = f'convert2epub subprocess.CalledProcessError: {e.stderr}' print(error) return False except FileNotFoundError as e: DependencyError(e) error = f'convert2epub FileNotFoundError: {e}' print(error) return False except Exception as e: DependencyError(e) error = f'convert2epub error: {e}' print(error) return False def get_ebook_title(epubBook:EpubBook,all_docs:list[Any])->str|None: # 1. Try metadata (official EPUB title) meta_title = epubBook.get_metadata('DC','title') if meta_title and meta_title[0][0].strip(): return meta_title[0][0].strip() # 2. Try in the head of the first XHTML document if all_docs: html = all_docs[0].get_content().decode('utf-8') soup = BeautifulSoup(html,'html.parser') title_tag = soup.select_one('head > title') if title_tag and title_tag.text.strip(): return title_tag.text.strip() # 3. Try <img alt = '...'> if no visible <title> img = soup.find('img',alt = True) if img: alt = img['alt'].strip() if alt and 'cover' not in alt.lower(): return alt return None def get_cover(epubBook:EpubBook, id:str)->bool|str: try: session = context.get_session(id) if session: if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return False cover_image = None cover_path = os.path.join(session['process_dir'], session['filename_noext'] + '.jpg') for item in epubBook.get_items_of_type(ebooklib.ITEM_COVER): cover_image = item.get_content() break if not cover_image: for item in epubBook.get_items_of_type(ebooklib.ITEM_IMAGE): if 'cover' in item.file_name.lower() or 'cover' in item.get_id().lower(): cover_image = item.get_content() break if cover_image: # Open the image from bytes image = Image.open(io.BytesIO(cover_image)) # Convert to RGB if needed (JPEG doesn't support alpha) if image.mode in ('RGBA', 'P'): image = image.convert('RGB') image.save(cover_path, format = 'JPEG') return cover_path return True except Exception as e: DependencyError(e) return False def get_chapters(epubBook:EpubBook, id:str)->tuple[Any,Any]: try: msg = r''' ******************************************************************************* NOTE: The warning "Character xx not found in the vocabulary." MEANS THE MODEL CANNOT INTERPRET THE CHARACTER AND WILL MAYBE GENERATE (AS WELL AS WRONG PUNCTUATION POSITION) AN HALLUCINATION TO IMPROVE THIS MODEL, IT NEEDS TO ADD THIS CHARACTER INTO A NEW TRAINING MODEL. YOU CAN IMPROVE IT OR ASK TO A TRAINING MODEL EXPERT. ******************************************************************************* ''' print(msg) session = context.get_session(id) if session: if session['cancellation_requested']: msg = 'Cancel requested' return msg, None # Step 1: Extract TOC (Table of Contents) try: toc = epubBook.toc toc_list = [ nt for item in toc if hasattr(item, 'title') if (nt := normalize_text( str(item.title), session['language'], session['language_iso1'], session['tts_engine'] )) is not None ] except Exception as toc_error: error = f'Error extracting Table of Content: {toc_error}' show_alert({"type": "warning", "msg": error}) # Get spine item IDs spine_ids = [item[0] for item in epubBook.spine] # Filter only spine documents (i.e., reading order) all_docs = [ item for item in epubBook.get_items_of_type(ebooklib.ITEM_DOCUMENT) if item.id in spine_ids ] if not all_docs: error = 'No document body found!' return error, None title = get_ebook_title(epubBook, all_docs) chapters = [] stanza_nlp = False if session['language'] in year_to_decades_languages: try: stanza_model = f"stanza-{session['language_iso1']}" stanza_nlp = loaded_tts.get(stanza_model, False) if stanza_nlp: msg = f"NLP model {stanza_model} loaded!" print(msg) else: use_gpu = True if ( (session['device'] == devices['CUDA']['proc'] and not devices['JETSON']['found'] and devices['CUDA']['found']) or (session['device'] == devices['ROCM']['proc'] and devices['ROCM']['found']) or (session['device'] == devices['XPU']['proc'] and devices['XPU']['found']) ) else False stanza_nlp = stanza.Pipeline(session['language_iso1'], processors='tokenize,ner,mwt', use_gpu=use_gpu, download_method=DownloadMethod.REUSE_RESOURCES, dir=os.getenv('STANZA_RESOURCES_DIR')) if stanza_nlp: session['stanza_cache'] = stanza_model loaded_tts[stanza_model] = stanza_nlp msg = f"NLP model {stanza_model} loaded!" print(msg) except (ConnectionError, TimeoutError) as e: error = f'Stanza model download connection error: {e}. Retry later' return error, None except Exception as e: error = f'Stanza model initialization error: {e}' return error, None is_num2words_compat = get_num2words_compat(session['language_iso1']) msg = 'Analyzing numbers, maths signs, dates and time to convert in words...' print(msg) for doc in all_docs: sentences_list = filter_chapter(doc, id, stanza_nlp, is_num2words_compat) if sentences_list is None: break elif len(sentences_list) > 0: chapters.append(sentences_list) if len(chapters) == 0: error = 'No chapters found! possible reason: file corrupted or need to convert images to text with OCR' return error, None return toc_list, chapters return '', None except Exception as e: error = f'Error extracting main content pages: {e}' DependencyError(error) return error, None def filter_chapter(doc:EpubHtml, id:str, stanza_nlp:Pipeline, is_num2words_compat:bool)->list|None: def tuple_row(node:Any, last_text_char:str|None=None)->Generator[tuple[str, Any], None, None]|None: try: for child in node.children: if isinstance(child, NavigableString): text = child.strip() if text: yield ('text', text) last_text_char = text[-1] if text else last_text_char elif isinstance(child, Tag): name = child.name.lower() if name in heading_tags: title = child.get_text(strip=True) if title: yield ('heading', title) last_text_char = title[-1] if title else last_text_char elif name == 'table': yield ('table', child) else: return_data = False if name in proc_tags: for inner in tuple_row(child, last_text_char): return_data = True yield inner # Track last char if this is text or heading if inner[0] in ('text', 'heading') and inner[1]: last_text_char = inner[1][-1] if return_data: if name in break_tags: # Only yield break if last char is NOT alnum or space if not (last_text_char and (last_text_char.isalnum() or last_text_char.isspace())): yield ('break', TTS_SML['break']) elif name in heading_tags or name in pause_tags: yield ('pause', TTS_SML['pause']) else: yield from tuple_row(child, last_text_char) except Exception as e: error = f'filter_chapter() tuple_row() error: {e}' DependencyError(error) return None try: session = context.get_session(id) if session: lang, lang_iso1, tts_engine = session['language'], session['language_iso1'], session['tts_engine'] heading_tags = [f'h{i}' for i in range(1, 5)] break_tags = ['br', 'p'] pause_tags = ['div', 'span'] proc_tags = heading_tags + break_tags + pause_tags doc_body = doc.get_body_content() raw_html = doc_body.decode('utf-8') if isinstance(doc_body, bytes) else doc_body soup = BeautifulSoup(raw_html, 'html.parser') body = soup.body if not body or not body.get_text(strip=True): return [] # Skip known non-chapter types epub_type = body.get('epub:type', '').lower() if not epub_type: section_tag = soup.find('section') if section_tag: epub_type = section_tag.get('epub:type', '').lower() excluded = { 'frontmatter', 'backmatter', 'toc', 'titlepage', 'colophon', 'acknowledgments', 'dedication', 'glossary', 'index', 'appendix', 'bibliography', 'copyright-page', 'landmark' } if any(part in epub_type for part in excluded): return [] # remove scripts/styles for tag in soup(['script', 'style']): tag.decompose() tuples_list = list(tuple_row(body)) if not tuples_list: error = 'No tuples_list from body created!' print(error) return None text_list = [] handled_tables = set() prev_typ = None for typ, payload in tuples_list: if typ == 'heading': text_list.append(payload.strip()) elif typ in ('break', 'pause'): if prev_typ != typ: text_list.append(TTS_SML[typ]) elif typ == 'table': table = payload if table in handled_tables: prev_typ = typ continue handled_tables.add(table) rows = table.find_all('tr') if not rows: prev_typ = typ continue headers = [c.get_text(strip=True) for c in rows[0].find_all(['td', 'th'])] for row in rows[1:]: cells = [c.get_text(strip=True).replace('\xa0', ' ') for c in row.find_all('td')] if not cells: continue if len(cells) == len(headers) and headers: line = ' — '.join(f'{h}: {c}' for h, c in zip(headers, cells)) else: line = ' — '.join(cells) if line: text_list.append(line.strip()) else: text = payload.strip() if text: text_list.append(text) prev_typ = typ max_chars = int(language_mapping[lang]['max_chars'] / 2) clean_list = [] i = 0 while i < len(text_list): current = text_list[i] if current == '‡break‡': if clean_list: prev = clean_list[-1] if prev in ('‡break‡', '‡pause‡'): i += 1 continue if prev and (prev[-1].isalnum() or prev[-1] == ' '): if i + 1 < len(text_list): next_sentence = text_list[i + 1] merged_length = len(prev.rstrip()) + 1 + len(next_sentence.lstrip()) if merged_length <= max_chars: # Merge with space handling if not prev.endswith(' ') and not next_sentence.startswith(' '): clean_list[-1] = prev + ' ' + next_sentence else: clean_list[-1] = prev + next_sentence i += 2 continue else: clean_list.append(current) i += 1 continue clean_list.append(current) i += 1 text = ' '.join(clean_list) if not re.search(r"[^\W_]", text): error = 'No valid text found!' print(error) return None if stanza_nlp: # Check if there are positive integers so possible date to convert re_ordinal = re.compile( r'(?<!\w)(0?[1-9]|[12][0-9]|3[01])(?:\s|\u00A0)*(?:st|nd|rd|th)(?!\w)', re.IGNORECASE ) re_num = re.compile(r'(?<!\w)[-+]?\d+(?:\.\d+)?(?!\w)') text = unicodedata.normalize('NFKC', text).replace('\u00A0', ' ') if re_num.search(text) and re_ordinal.search(text): date_spans = get_date_entities(text, stanza_nlp) if date_spans: result = [] last_pos = 0 for start, end, date_text in date_spans: result.append(text[last_pos:start]) # 1) convert 4-digit years (your original behavior) processed = re.sub( r"\b\d{4}\b", lambda m: year2words(m.group(), lang, lang_iso1, is_num2words_compat), date_text ) # 2) convert ordinal days like "16th"/"16 th" -> "sixteenth" if is_num2words_compat: processed = re_ordinal.sub( lambda m: num2words(int(m.group(1)), to='ordinal', lang=(lang_iso1 or 'en')), processed ) else: processed = re_ordinal.sub( lambda m: math2words(m.group(), lang, lang_iso1, tts_engine, is_num2words_compat), processed ) # 3) convert other numbers (skip 4-digit years) def _num_repl(m): s = m.group(0) # leave years alone (already handled above) if re.fullmatch(r"\d{4}", s): return s n = float(s) if '.' in s else int(s) if is_num2words_compat: return num2words(n, lang=(lang_iso1 or 'en')) else: return math2words(m, lang, lang_iso1, tts_engine, is_num2words_compat) processed = re_num.sub(_num_repl, processed) result.append(processed) last_pos = end result.append(text[last_pos:]) text = ''.join(result) else: if is_num2words_compat: text = re_ordinal.sub( lambda m: num2words(int(m.group(1)), to='ordinal', lang=(lang_iso1 or 'en')), text ) else: text = re_ordinal.sub( lambda m: math2words(int(m.group(1)), lang, lang_iso1, tts_engine, is_num2words_compat), text ) text = re.sub( r"\b\d{4}\b", lambda m: year2words(m.group(), lang, lang_iso1, is_num2words_compat), text ) text = roman2number(text) text = clock2words(text, lang, lang_iso1, tts_engine, is_num2words_compat) text = math2words(text, lang, lang_iso1, tts_engine, is_num2words_compat) text = normalize_text(text, lang, lang_iso1, tts_engine) sentences = get_sentences(text, id) if sentences and len(sentences) == 0: error = 'No sentences found!' print(error) return None return sentences return None except Exception as e: error = f'filter_chapter() error: {e}' DependencyError(error) return None def get_sentences(text:str, id:str)->list|None: def split_inclusive(text:str, pattern:re.Pattern[str])->list[str]: result = [] last_end = 0 for match in pattern.finditer(text): result.append(text[last_end:match.end()].strip()) last_end = match.end() if last_end < len(text): tail = text[last_end:].strip() if tail: result.append(tail) return result def segment_ideogramms(text:str)->list[str]: sml_pattern = '|'.join(re.escape(token) for token in sml_tokens) segments = re.split(f'({sml_pattern})', text) result = [] try: for segment in segments: if not segment: continue if re.fullmatch(sml_pattern, segment): result.append(segment) else: if lang in ['yue','yue-Hant','yue-Hans','zh-yue','cantonese']: import pycantonese as pc result.extend([t for t in pc.segment(segment) if t.strip()]) elif lang == 'zho': import jieba jieba.dt.cache_file = os.path.join(models_dir, 'jieba.cache') result.extend([t for t in jieba.cut(segment) if t.strip()]) elif lang == 'jpn': """ from sudachipy import dictionary, tokenizer sudachi = dictionary.Dictionary().create() mode = tokenizer.Tokenizer.SplitMode.C result.extend([m.surface() for m in sudachi.tokenize(segment, mode) if m.surface().strip()]) """ import nagisa tokens = nagisa.tagging(segment).words result.extend(tokens) elif lang == 'kor': from soynlp.tokenizer import LTokenizer ltokenizer = LTokenizer() result.extend([t for t in ltokenizer.tokenize(segment) if t.strip()]) elif lang in ['tha','lao','mya','khm']: from pythainlp.tokenize import word_tokenize result.extend([t for t in word_tokenize(segment, engine='newmm') if t.strip()]) else: result.append(segment.strip()) return result except Exception as e: DependencyError(e) return [text] def join_ideogramms(idg_list:list[str])->str: try: buffer = '' for token in idg_list: # 1) On sml token: flush & emit buffer, then emit the token if token.strip() in sml_tokens: if buffer: yield buffer buffer = '' yield token continue # 2) If adding this token would overflow, flush current buffer first if buffer and len(buffer) + len(token) > max_chars: yield buffer buffer = '' # 3) Append the token (word, punctuation, whatever) unless it's a sml token (already checked) buffer += token # 4) Flush any trailing text if buffer: yield buffer except Exception as e: DependencyError(e) if buffer: yield buffer try: session = context.get_session(id) if session: lang, tts_engine = session['language'], session['tts_engine'] max_chars = int(language_mapping[lang]['max_chars'] / 2) min_tokens = 5 # List or tuple of tokens that must never be appended to buffer sml_tokens = tuple(TTS_SML.values()) sml_list = re.split(rf"({'|'.join(map(re.escape, sml_tokens))})", text) sml_list = [s for s in sml_list if s.strip() or s in sml_tokens] pattern_split = '|'.join(map(re.escape, punctuation_split_hard_set)) pattern = re.compile(rf"(.*?(?:{pattern_split}){''.join(punctuation_list_set)})(?=\s|$)", re.DOTALL) hard_list = [] for s in sml_list: if s in [TTS_SML['break'], TTS_SML['pause']] or len(s) <= max_chars: hard_list.append(s) else: parts = split_inclusive(s, pattern) if parts: for text_part in parts: text_part = text_part.strip() if text_part: hard_list.append(f' {text_part}') else: s = s.strip() if s: hard_list.append(s) # Check if some hard_list entries exceed max_chars, so split on soft punctuation pattern_split = '|'.join(map(re.escape, punctuation_split_soft_set)) pattern = re.compile(rf"(.*?(?:{pattern_split}))(?=\s|$)", re.DOTALL) soft_list = [] for s in hard_list: if s in [TTS_SML['break'], TTS_SML['pause']] or len(s) <= max_chars: soft_list.append(s) elif len(s) > max_chars: parts = [p for p in split_inclusive(s, pattern) if p] if parts: buffer = '' for idx, part in enumerate(parts): # Predict length if we glue this part predicted_length = len(buffer) + (1 if buffer else 0) + len(part) # Peek ahead to see if gluing will exceed max_chars if predicted_length <= max_chars: buffer = (buffer + ' ' + part).strip() if buffer else part else: # If we overshoot, check if buffer ends with punctuation if buffer and not any(buffer.rstrip().endswith(p) for p in punctuation_split_soft_set): # Try to backtrack to last punctuation inside buffer last_punct_idx = max((buffer.rfind(p) for p in punctuation_split_soft_set if p in buffer), default=-1) if last_punct_idx != -1: soft_list.append(buffer[:last_punct_idx+1].strip()) leftover = buffer[last_punct_idx+1:].strip() buffer = leftover + ' ' + part if leftover else part else: # No punctuation, just split as-is soft_list.append(buffer.strip()) buffer = part else: soft_list.append(buffer.strip()) buffer = part if buffer: cleaned = re.sub(r'[^\p{L}\p{N} ]+', '', buffer) if any(ch.isalnum() for ch in cleaned): soft_list.append(buffer.strip()) else: cleaned = re.sub(r'[^\p{L}\p{N} ]+', '', s) if any(ch.isalnum() for ch in cleaned): soft_list.append(s.strip()) else: cleaned = re.sub(r'[^\p{L}\p{N} ]+', '', s) if any(ch.isalnum() for ch in cleaned): soft_list.append(s.strip()) soft_list = [s for s in soft_list if any(ch.isalnum() for ch in re.sub(r'[^\p{L}\p{N} ]+', '', s))] if lang in ['zho', 'jpn', 'kor', 'tha', 'lao', 'mya', 'khm']: result = [] for s in soft_list: if s in [TTS_SML['break'], TTS_SML['pause']]: result.append(s) else: tokens = segment_ideogramms(s) if isinstance(tokens, list): result.extend([t for t in tokens if t.strip()]) else: tokens = tokens.strip() if tokens: result.append(tokens) return list(join_ideogramms(result)) else: sentences = [] for s in soft_list: if s in [TTS_SML['break'], TTS_SML['pause']] or len(s) <= max_chars: if sentences and s in (TTS_SML['break'], TTS_SML['pause']): last = sentences[-1] if last and last[-1].isalnum(): sentences[-1] = last + ";\n" sentences.append(s) else: words = s.split(' ') text_part = words[0] for w in words[1:]: if len(text_part) + 1 + len(w) <= max_chars: text_part += ' ' + w else: text_part = text_part.strip() if text_part: sentences.append(text_part) text_part = w if text_part: cleaned = re.sub(r'[^\p{L}\p{N} ]+', '', text_part).strip() if not any(ch.isalnum() for ch in cleaned): continue sentences.append(text_part) return sentences return None except Exception as e: error = f'get_sentences() error: {e}' print(error) return None def get_sanitized(str:str, replacement:str='_')->str: str = str.replace('&', 'And') forbidden_chars = r'[<>:"/\\|?*\x00-\x1F ()]' sanitized = re.sub(r'\s+', replacement, str) sanitized = re.sub(forbidden_chars, replacement, sanitized) sanitized = sanitized.strip('_') return sanitized def get_date_entities(text:str, stanza_nlp:Pipeline)->list[tuple[int,int,str]]|bool: try: doc = stanza_nlp(text) date_spans = [] for ent in doc.ents: if ent.type == 'DATE': date_spans.append((ent.start_char, ent.end_char, ent.text)) return date_spans except Exception as e: error = f'get_date_entities() error: {e}' print(error) return False def get_num2words_compat(lang_iso1:str)->bool: try: test = num2words(1, lang=lang_iso1.replace('zh', 'zh_CN')) return True except NotImplementedError: return False except Exception as e: return False def set_formatted_number(text:str, lang:str, lang_iso1:str, is_num2words_compat:bool, max_single_value:int=999_999_999_999_999_999)->str: # match up to 18 digits, optional “,…” groups (allowing spaces or NBSP after comma), optional decimal of up to 12 digits # handle optional range with dash/en dash/em dash between numbers, and allow trailing punctuation number_re = re.compile( r'(?<!\w)' r'(\d{1,18}(?:,\s*\d{1,18})*(?:\.\d{1,12})?)' # first number r'(?:\s*([-–—])\s*' # dash type r'(\d{1,18}(?:,\s*\d{1,18})*(?:\.\d{1,12})?))?' # optional second number r'([^\w\s]*)', # optional trailing punctuation re.UNICODE ) def normalize_commas(num_str:str)->str: # ormalize number string to standard comma format: 1,234,567 tok = num_str.replace('\u00A0', '').replace(' ', '') if '.' in tok: integer_part, decimal_part = tok.split('.', 1) integer_part = integer_part.replace(',', '') integer_part = "{:,}".format(int(integer_part)) return f'{integer_part}.{decimal_part}' else: integer_part = tok.replace(',', '') return "{:,}".format(int(integer_part)) def clean_single_num(num_str:str)->str: tok = unicodedata.normalize('NFKC', num_str) if tok.lower() in ('inf', 'infinity', 'nan'): return tok clean = tok.replace(',', '').replace('\u00A0', '').replace(' ', '') try: num = float(clean) if '.' in clean else int(clean) except (ValueError, OverflowError): return tok if not math.isfinite(num) or abs(num) > max_single_value: return tok # Normalize commas before final output tok = normalize_commas(tok) if is_num2words_compat: new_lang_iso1 = lang_iso1.replace('zh', 'zh_CN') return num2words(num, lang=new_lang_iso1) else: phoneme_map = language_math_phonemes.get( lang, language_math_phonemes.get(default_language_code, language_math_phonemes['eng']) ) return ' '.join(phoneme_map.get(ch, ch) for ch in str(num)) def clean_match(match:re.Match)->str: first_num = clean_single_num(match.group(1)) dash_char = match.group(2) or '' second_num = clean_single_num(match.group(3)) if match.group(3) else '' trailing = match.group(4) or '' if second_num: return f'{first_num}{dash_char}{second_num}{trailing}' else: return f'{first_num}{trailing}' return number_re.sub(clean_match, text) def year2words(year_str:str, lang:str, lang_iso1:str, is_num2words_compat:bool)->str|bool: try: year = int(year_str) first_two = int(year_str[:2]) last_two = int(year_str[2:]) lang_iso1 = lang_iso1 if lang in language_math_phonemes.keys() else default_language_code lang_iso1 = lang_iso1.replace('zh', 'zh_CN') if not year_str.isdigit() or len(year_str) != 4 or last_two < 10: if is_num2words_compat: return num2words(year, lang=lang_iso1) else: return ' '.join(language_math_phonemes[lang].get(ch, ch) for ch in year_str) if is_num2words_compat: return f'{num2words(first_two, lang=lang_iso1)} {num2words(last_two, lang=lang_iso1)}' else: return ' '.join(language_math_phonemes[lang].get(ch, ch) for ch in first_two) + ' ' + ' '.join(language_math_phonemes[lang].get(ch, ch) for ch in last_two) except Exception as e: error = f'year2words() error: {e}' print(error) return False def clock2words(text:str, lang:str, lang_iso1:str, tts_engine:str, is_num2words_compat:bool)->str: time_rx = re.compile(r'(\d{1,2})[:.](\d{1,2})(?:[:.](\d{1,2}))?') lc = language_clock.get(lang) if 'language_clock' in globals() else None _n2w_cache = {} def n2w(n:int)->str: key = (n, lang, is_num2words_compat) if key in _n2w_cache: return _n2w_cache[key] if is_num2words_compat: word = num2words(n, lang=lang_iso1) else: word = math2words(n, lang, lang_iso1, tts_engine, is_num2words_compat) _n2w_cache[key] = word return word def repl_num(m:re.Match)->str: # Parse hh[:mm[:ss]] try: h = int(m.group(1)) mnt = int(m.group(2)) sec = m.group(3) sec = int(sec) if sec is not None else None except Exception: return m.group(0) # basic validation; if out of range, keep original if not (0 <= h <= 23 and 0 <= mnt <= 59 and (sec is None or 0 <= sec <= 59)): return m.group(0) # If no language clock rules, just say numbers plainly if not lc: parts = [n2w(h)] if mnt != 0: parts.append(n2w(mnt)) if sec is not None and sec > 0: parts.append(n2w(sec)) return ' '.join(parts) next_hour = (h + 1) % 24 special_hours = lc.get('special_hours', {}) # Build main phrase if mnt == 0 and (sec is None or sec == 0): if h in special_hours: phrase = special_hours[h] else: phrase = lc['oclock'].format(hour=n2w(h)) elif mnt == 15: phrase = lc['quarter_past'].format(hour=n2w(h)) elif mnt == 30: # German 'halb drei' (= 2:30) uses next hour if lang == 'deu': phrase = lc['half_past'].format(next_hour=n2w(next_hour)) else: phrase = lc['half_past'].format(hour=n2w(h)) elif mnt == 45: phrase = lc['quarter_to'].format(next_hour=n2w(next_hour)) elif mnt < 30: phrase = lc['past'].format(hour=n2w(h), minute=n2w(mnt)) if mnt != 0 else lc['oclock'].format(hour=n2w(h)) else: minute_to_hour = 60 - mnt phrase = lc['to'].format(next_hour=n2w(next_hour), minute=n2w(minute_to_hour)) # Append seconds if present if sec is not None and sec > 0: second_phrase = lc['second'].format(second=n2w(sec)) phrase = lc['full'].format(phrase=phrase, second_phrase=second_phrase) return phrase return time_rx.sub(repl_num, text) def math2words(text:str, lang:str, lang_iso1:str, tts_engine:str, is_num2words_compat:bool)->str: def repl_ambiguous(match:re.Match)->str: # handles "num SYMBOL num" and "SYMBOL num" if match.group(2) and match.group(2) in ambiguous_replacements: return f'{match.group(1)} {ambiguous_replacements[match.group(2)]} {match.group(3)}' if match.group(3) and match.group(3) in ambiguous_replacements: return f'{ambiguous_replacements[match.group(3)]} {match.group(4)}' return match.group(0) def _ordinal_to_words(m:re.Match)->str: n = int(m.group(1)) if is_num2words_compat: try: from num2words import num2words return num2words(n, to='ordinal', lang=(lang_iso1 or 'en')) except Exception: pass # If num2words isn't available/compatible, keep original token as-is. return m.group(0) # Matches any digits + optional space/NBSP + st/nd/rd/th, not glued into words. re_ordinal = re.compile(r'(?<!\w)(\d+)(?:\s|\u00A0)*(?:st|nd|rd|th)(?!\w)') text = re.sub(r'(\d)\)', r'\1 : ', text) text = re_ordinal.sub(_ordinal_to_words, text) # Symbol phonemes ambiguous_symbols = {"-", "/", "*", "x"} phonemes_list = language_math_phonemes.get(lang, language_math_phonemes[default_language_code]) replacements = {k: v for k, v in phonemes_list.items() if not k.isdigit() and k not in [',', '.']} normal_replacements = {k: v for k, v in replacements.items() if k not in ambiguous_symbols} ambiguous_replacements = {k: v for k, v in replacements.items() if k in ambiguous_symbols} # Replace unambiguous symbols everywhere if normal_replacements: sym_pat = r'(' + '|'.join(map(re.escape, normal_replacements.keys())) + r')' text = re.sub(sym_pat, lambda m: f' {normal_replacements[m.group(1)]} ', text) # Replace ambiguous symbols only in valid equation contexts if ambiguous_replacements: ambiguous_pattern = ( r'(?<!\S)' # no non-space before r'(\d+)\s*([-/*x])\s*(\d+)' # num SYMBOL num r'(?!\S)' # no non-space after r'|' # or r'(?<!\S)([-/*x])\s*(\d+)(?!\S)' # SYMBOL num ) text = re.sub(ambiguous_pattern, repl_ambiguous, text) text = set_formatted_number(text, lang, lang_iso1, is_num2words_compat) return text def roman2number(text:str)->str: def is_valid_roman(s:str)->bool: return bool(valid_roman.fullmatch(s)) def to_int(s:str)->str: s = s.upper() i, result = 0, 0 while i < len(s): for roman, value in roman_numbers_tuples: if s[i:i+len(roman)] == roman: result += value i += len(roman) break else: return s return str(result) def repl_heading(m:re.Match)->str: roman = m.group(1) if not is_valid_roman(roman): return m.group(0) val = to_int(roman) return f'{val}{m.group(2)}{m.group(3)}' def repl_standalone(m:re.Match)->str: roman = m.group(1) if not is_valid_roman(roman): return m.group(0) val = to_int(roman) return f'{val}{m.group(2)}' def repl_word(m:re.Match)->str: roman = m.group(1) if not is_valid_roman(roman): return m.group(0) val = to_int(roman) return str(val) # Well-formed Romans up to 3999 valid_roman = re.compile( r'^(?=.)M{0,3}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$', re.IGNORECASE ) # Your heading/standalone rules stay text = re.sub(r'^(?:\s*)([IVXLCDM]+)([.-])(\s+)', repl_heading, text, flags=re.MULTILINE) text = re.sub(r'^(?:\s*)([IVXLCDM]+)([.-])(?:\s*)$', repl_standalone, text, flags=re.MULTILINE) # NEW: only convert whitespace-delimited tokens of length >= 2 # This avoids: 19C, 19°C, °C, AC/DC, CD-ROM, single-letter "I" text = re.sub(r'(?<!\S)([IVXLCDM]{2,})(?!\S)', repl_word, text) return text def is_latin(s: str) -> bool: return all((u'a' <= ch.lower() <= 'z') or ch.isdigit() or not ch.isalpha() for ch in s) def foreign2latin(text, base_lang): def script_of(word): for ch in word: if ch.isalpha(): name = unicodedata.name(ch, '') if 'CYRILLIC' in name: return 'cyrillic' if 'LATIN' in name: return 'latin' if 'ARABIC' in name: return 'arabic' if 'HANGUL' in name: return 'hangul' if 'HIRAGANA' in name or 'KATAKANA' in name: return 'japanese' if 'CJK' in name or 'IDEOGRAPH' in name: return 'chinese' return 'unknown' def romanize(word): scr = script_of(word) if scr == 'latin': return word try: if scr == 'chinese': from pypinyin import pinyin, Style return ''.join(x[0] for x in pinyin(word, style=Style.NORMAL)) if scr == 'japanese': import pykakasi k = pykakasi.kakasi() k.setMode('H', 'a') k.setMode('K', 'a') k.setMode('J', 'a') k.setMode('r', 'Hepburn') return k.getConverter().do(word) if scr == 'hangul': return unidecode(word) if scr == 'arabic': return unidecode(phonemize(word, language='ar', backend='espeak')) if scr == 'cyrillic': return unidecode(phonemize(word, language='ru', backend='espeak')) return unidecode(word) except: return unidecode(word) tts_markers = set(TTS_SML.values()) protected = {} for i, m in enumerate(tts_markers): key = f'__TTS_MARKER_{i}__' protected[key] = m text = text.replace(m, key) tokens = re.findall(r"\w+|[^\w\s]", text, re.UNICODE) buf = [] for t in tokens: if t in protected: buf.append(t) elif re.match(r"^\w+$", t): buf.append(romanize(t)) else: buf.append(t) out = '' for i, t in enumerate(buf): if i == 0: out += t else: if re.match(r"^\w+$", buf[i-1]) and re.match(r"^\w+$", t): out += ' ' + t else: out += t for k, v in protected.items(): out = out.replace(k, v) return out def filter_sml(text:str)->str: for key, value in TTS_SML.items(): pattern = re.escape(key) if key == '###' else r'\[' + re.escape(key) + r'\]' text = re.sub(pattern, f' {value} ', text) return text def normalize_text(text:str, lang:str, lang_iso1:str, tts_engine:str)->str: # Remove emojis emoji_pattern = re.compile(f"[{''.join(emojis_list)}]+", flags=re.UNICODE) emoji_pattern.sub('', text) if lang in abbreviations_mapping: def repl_abbreviations(match: re.Match) -> str: token = match.group(1) for k, expansion in mapping.items(): if token.lower() == k.lower(): return expansion return token # fallback mapping = abbreviations_mapping[lang] # Sort keys by descending length so longer ones match first keys = sorted(mapping.keys(), key=len, reverse=True) # Build a regex that only matches whole “words” (tokens) exactly pattern = re.compile( r'(?<!\w)(' + '|'.join(re.escape(k) for k in keys) + r')(?!\w)', flags=re.IGNORECASE ) text = pattern.sub(repl_abbreviations, text) # This regex matches sequences like a., c.i.a., f.d.a., m.c., etc... pattern = re.compile(r'\b(?:[a-zA-Z]\.){1,}[a-zA-Z]?\b\.?') # uppercase acronyms text = re.sub(r'\b(?:[a-zA-Z]\.){1,}[a-zA-Z]?\b\.?', lambda m: m.group().replace('.', '').upper(), text) # Prepare SML tags text = filter_sml(text) # romanize foreign words if language_mapping[lang]['script'] == 'latin': text = foreign2latin(text, lang) # Replace multiple newlines ("\n\n", "\r\r", "\n\r", etc.) with a ‡pause‡ 1.4sec pattern = r'(?:\r\n|\r|\n){2,}' text = re.sub(pattern, f" {TTS_SML['pause']} ", text) # Replace single newlines ("\n" or "\r") with spaces text = re.sub(r'\r\n|\r|\n', ' ', text) # Replace punctuations causing hallucinations pattern = f"[{''.join(map(re.escape, punctuation_switch.keys()))}]" text = re.sub(pattern, lambda match: punctuation_switch.get(match.group(), match.group()), text) # remove unwanted chars chars_remove_table = str.maketrans({ch: ' ' for ch in chars_remove}) text = text.translate(chars_remove_table) # Replace multiple and spaces with single space text = re.sub(r'\s+', ' ', text) # Replace ok by 'Owkey' text = re.sub(r'\bok\b', 'Okay', text, flags=re.IGNORECASE) # Escape special characters in the punctuation list for regex pattern = '|'.join(map(re.escape, punctuation_split_hard_set)) # Reduce multiple consecutive punctuations hard text = re.sub(rf'(\s*({pattern})\s*)+', r'\2 ', text).strip() # Escape special characters in the punctuation list for regex pattern = '|'.join(map(re.escape, punctuation_split_soft_set)) # Reduce multiple consecutive punctuations soft text = re.sub(rf'(\s*({pattern})\s*)+', r'\2 ', text).strip() # Pattern 1: Add a space between UTF-8 characters and numbers text = re.sub(r'(?<=[\p{L}])(?=\d)|(?<=\d)(?=[\p{L}])', ' ', text) # Replace special chars with words specialchars = specialchars_mapping.get(lang, specialchars_mapping.get(default_language_code, specialchars_mapping['eng'])) specialchars_table = {ord(char): f" {word} " for char, word in specialchars.items()} text = text.translate(specialchars_table) text = ' '.join(text.split()) return text def convert_chapters2audio(id:str)->bool: session = context.get_session(id) if session: try: if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return False tts_manager = TTSManager(session) resume_chapter = 0 missing_chapters = [] resume_sentence = 0 missing_sentences = [] existing_chapters = sorted( [f for f in os.listdir(session['chapters_dir']) if f.endswith(f'.{default_audio_proc_format}')], key=lambda x: int(re.search(r'\d+', x).group()) ) if existing_chapters: resume_chapter = max(int(re.search(r'\d+', f).group()) for f in existing_chapters) msg = f'Resuming from block {resume_chapter}' print(msg) existing_chapter_numbers = {int(re.search(r'\d+', f).group()) for f in existing_chapters} missing_chapters = [ i for i in range(1, resume_chapter) if i not in existing_chapter_numbers ] if resume_chapter not in missing_chapters: missing_chapters.append(resume_chapter) existing_sentences = sorted( [f for f in os.listdir(session['chapters_dir_sentences']) if f.endswith(f'.{default_audio_proc_format}')], key=lambda x: int(re.search(r'\d+', x).group()) ) if existing_sentences: resume_sentence = max(int(re.search(r'\d+', f).group()) for f in existing_sentences) msg = f'Resuming from sentence {resume_sentence}' print(msg) existing_sentence_numbers = {int(re.search(r'\d+', f).group()) for f in existing_sentences} missing_sentences = [ i for i in range(1, resume_sentence) if i not in existing_sentence_numbers ] if resume_sentence not in missing_sentences: missing_sentences.append(resume_sentence) total_chapters = len(session['chapters']) if total_chapters == 0: error = 'No chapterrs found!' print(error) return False total_iterations = sum(len(session['chapters'][x]) for x in range(total_chapters)) total_sentences = sum(sum(1 for row in chapter if row.strip() not in TTS_SML.values()) for chapter in session['chapters']) if total_sentences == 0: error = 'No sentences found!' print(error) return False sentence_number = 0 msg = f"--------------------------------------------------\nA total of {total_chapters} {'block' if total_chapters <= 1 else 'blocks'} and {total_sentences} {'sentence' if total_sentences <= 1 else 'sentences'}.\n--------------------------------------------------" print(msg) if session['is_gui_process']: progress_bar = gr.Progress(track_tqdm=False) if session['ebook']: ebook_name = Path(session['ebook']).name with tqdm(total=total_iterations, desc='0.00%', bar_format='{desc}: {n_fmt}/{total_fmt} ', unit='step', initial=0) as t: for x in range(0, total_chapters): chapter_num = x + 1 chapter_audio_file = f'chapter_{chapter_num}.{default_audio_proc_format}' sentences = session['chapters'][x] sentences_count = sum(1 for row in sentences if row.strip() not in TTS_SML.values()) start = sentence_number msg = f'Block {chapter_num} containing {sentences_count} sentences...' print(msg) for i, sentence in enumerate(sentences): if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return False if sentence_number in missing_sentences or sentence_number > resume_sentence or (sentence_number == 0 and resume_sentence == 0): if sentence_number <= resume_sentence and sentence_number > 0: msg = f'**Recovering missing file sentence {sentence_number}' print(msg) sentence = sentence.strip() success = tts_manager.convert_sentence2audio(sentence_number, sentence) if sentence else True if success: total_progress = (t.n + 1) / total_iterations if session['is_gui_process']: progress_bar(progress=total_progress, desc=ebook_name) is_sentence = sentence.strip() not in TTS_SML.values() percentage = total_progress * 100 t.set_description(f"{percentage:.2f}%") msg = f' : {sentence}' if is_sentence else f' : {sentence}' print(msg) else: return False if sentence.strip() not in TTS_SML.values(): sentence_number += 1 t.update(1) end = sentence_number - 1 if sentence_number > 1 else sentence_number msg = f'End of Block {chapter_num}' print(msg) if chapter_num in missing_chapters or sentence_number > resume_sentence: if chapter_num <= resume_chapter: msg = f'**Recovering missing file block {chapter_num}' print(msg) if combine_audio_sentences(chapter_audio_file, int(start), int(end), id): msg = f'Combining block {chapter_num} to audio, sentence {start} to {end}' print(msg) else: msg = 'combine_audio_sentences() failed!' print(msg) return False return True except Exception as e: DependencyError(e) return False def combine_audio_sentences(file:str, start:int, end:int, id:str)->bool: try: session = context.get_session(id) if session: audio_file = os.path.join(session['chapters_dir'], file) chapters_dir_sentences = session['chapters_dir_sentences'] batch_size = 1024 start = int(start) end = int(end) is_gui_process = session.get('is_gui_process') sentence_files = [ f for f in os.listdir(chapters_dir_sentences) if f.endswith(f'.{default_audio_proc_format}') ] sentences_ordered = sorted( sentence_files, key=lambda x: int(os.path.splitext(x)[0]) ) selected_files = [ os.path.join(chapters_dir_sentences, f) for f in sentences_ordered if start <= int(os.path.splitext(f)[0]) <= end ] if not selected_files: print('No audio files found in the specified range.') return False temp_sentence = os.path.join(session['process_dir'], "sentence_chunks") os.makedirs(temp_sentence, exist_ok=True) with tempfile.TemporaryDirectory(dir=temp_sentence) as temp_dir: chunk_list = [] total_batches = (len(selected_files)+batch_size-1)//batch_size iterator = tqdm(range(0,len(selected_files),batch_size),total=total_batches,desc="Preparing batches",unit="batch") for idx,i in enumerate(iterator): if session.get('is_gui_progress') and gr_progress: gr_progress((idx+1)/total_batches,"Preparing batches") if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return False batch = selected_files[i:i + batch_size] txt = os.path.join(temp_dir, f'chunk_{i:04d}.txt') out = os.path.join(temp_dir, f'chunk_{i:04d}.{default_audio_proc_format}') with open(txt, 'w') as f: for file in batch: f.write(f"file '{file.replace(os.sep, '/')}'\n") chunk_list.append((txt, out, is_gui_process)) try: with Pool(cpu_count()) as pool: results = pool.starmap(assemble_chunks, chunk_list) except Exception as e: error = f'combine_audio_sentences() multiprocessing error: {e}' print(error) return False if not all(results): error = 'combine_audio_sentences() One or more chunks failed.' print(error) return False final_list = os.path.join(temp_dir, 'sentences_final.txt') with open(final_list, 'w') as f: for _, chunk_path, _ in chunk_list: f.write(f"file '{chunk_path.replace(os.sep, '/')}'\n") if session.get('is_gui_progress') and gr_progress: gr_progress(1.0,"Final merge") if assemble_chunks(final_list, audio_file, is_gui_process): msg = f'********* Combined block audio file saved in {audio_file}' print(msg) return True else: error = 'combine_audio_sentences() Final merge failed.' print(error) return False except Exception as e: DependencyError(e) return False def combine_audio_chapters(id:str)->list[str]|None: def get_audio_duration(filepath:str)->float: try: ffprobe_cmd = [ shutil.which('ffprobe'), '-v', 'error', '-show_entries', 'format=duration', '-of', 'json', filepath ] result = subprocess.run(ffprobe_cmd, capture_output=True, text=True) try: return float(json.loads(result.stdout)['format']['duration']) except Exception: return 0 except subprocess.CalledProcessError as e: DependencyError(e) return 0 except Exception as e: error = f'get_audio_duration() Error: Failed to process {txt_file} → {out_file}: {e}' print(error) return 0 def generate_ffmpeg_metadata(part_chapters:list[tuple[str,str]], output_metadata_path:str, default_audio_proc_format:str)->str|bool: try: out_fmt = session['output_format'] is_mp4_like = out_fmt in ['mp4', 'm4a', 'm4b', 'mov'] is_vorbis = out_fmt in ['ogg', 'webm'] is_mp3 = out_fmt == 'mp3' def tag(key): return key.upper() if is_vorbis else key ffmpeg_metadata = ';FFMETADATA1\n' if session['metadata'].get('title'): ffmpeg_metadata += f"{tag('title')}={session['metadata']['title']}\n" if session['metadata'].get('creator'): ffmpeg_metadata += f"{tag('artist')}={session['metadata']['creator']}\n" if session['metadata'].get('language'): ffmpeg_metadata += f"{tag('language')}={session['metadata']['language']}\n" if session['metadata'].get('description'): ffmpeg_metadata += f"{tag('description')}={session['metadata']['description']}\n" if session['metadata'].get('publisher') and (is_mp4_like or is_mp3): ffmpeg_metadata += f"{tag('publisher')}={session['metadata']['publisher']}\n" if session['metadata'].get('published'): try: if '.' in session['metadata']['published']: year = datetime.strptime(session['metadata']['published'], '%Y-%m-%dT%H:%M:%S.%f%z').year else: year = datetime.strptime(session['metadata']['published'], '%Y-%m-%dT%H:%M:%S%z').year except Exception: year = datetime.now().year else: year = datetime.now().year if is_vorbis: ffmpeg_metadata += f"{tag('date')}={year}\n" else: ffmpeg_metadata += f"{tag('year')}={year}\n" if session['metadata'].get('identifiers') and isinstance(session['metadata']['identifiers'], dict): if is_mp3 or is_mp4_like: isbn = session['metadata']['identifiers'].get('isbn') if isbn: ffmpeg_metadata += f"{tag('isbn')}={isbn}\n" asin = session['metadata']['identifiers'].get('mobi-asin') if asin: ffmpeg_metadata += f"{tag('asin')}={asin}\n" start_time = 0 for filename, chapter_title in part_chapters: if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return False filepath = os.path.join(session['chapters_dir'], filename) duration_ms = len(AudioSegment.from_file(filepath, format=default_audio_proc_format)) clean_title = re.sub(r'(^#)|[=\\]|(-$)', lambda m: '\\' + (m.group(1) or m.group(0)), sanitize_meta_chapter_title(chapter_title)) ffmpeg_metadata += '[CHAPTER]\nTIMEBASE=1/1000\n' ffmpeg_metadata += f'START={start_time}\nEND={start_time + duration_ms}\n' ffmpeg_metadata += f"{tag('title')}={clean_title}\n" start_time += duration_ms with open(output_metadata_path, 'w', encoding='utf-8') as f: f.write(ffmpeg_metadata) return output_metadata_path except Exception as e: error = f'generate_ffmpeg_metadata() Error: Failed to process {txt_file} → {out_file}: {e}' print(error) return False def export_audio(ffmpeg_combined_audio:str, ffmpeg_metadata_file:str, ffmpeg_final_file:str)->bool: try: if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return False cover_path = None ffprobe_cmd = [ shutil.which('ffprobe'), '-v', 'error', '-select_streams', 'a:0', '-show_entries', 'stream=codec_name,sample_rate,sample_fmt', '-of', 'default=nokey=1:noprint_wrappers=1', ffmpeg_combined_audio ] probe = subprocess.run(ffprobe_cmd, capture_output=True, text=True) codec_info = probe.stdout.strip().splitlines() input_codec = codec_info[0] if len(codec_info) > 0 else None input_rate = codec_info[1] if len(codec_info) > 1 else None cmd = [shutil.which('ffmpeg'), '-hide_banner', '-nostats', '-hwaccel', 'auto', '-thread_queue_size', '1024', '-i', ffmpeg_combined_audio] target_codec, target_rate = None, None if session['output_format'] == 'wav': target_codec = 'pcm_s16le' target_rate = '44100' cmd += ['-map', '0:a', '-ar', target_rate, '-sample_fmt', 's16'] elif session['output_format'] == 'aac': target_codec = 'aac' target_rate = '44100' cmd += ['-c:a', 'aac', '-b:a', '192k', '-ar', target_rate, '-movflags', '+faststart'] elif session['output_format'] == 'flac': target_codec = 'flac' target_rate = '44100' cmd += ['-c:a', 'flac', '-compression_level', '5', '-ar', target_rate] else: cmd += ['-f', 'ffmetadata', '-i', ffmpeg_metadata_file, '-map', '0:a'] if session['output_format'] in ['m4a', 'm4b', 'mp4', 'mov']: target_codec = 'aac' target_rate = '44100' cmd += ['-c:a', 'aac', '-b:a', '192k', '-ar', target_rate, '-movflags', '+faststart+use_metadata_tags'] elif session['output_format'] == 'mp3': target_codec = 'mp3' target_rate = '44100' cmd += ['-c:a', 'libmp3lame', '-b:a', '192k', '-ar', target_rate] elif session['output_format'] == 'webm': target_codec = 'opus' target_rate = '48000' cmd += ['-c:a', 'libopus', '-b:a', '192k', '-ar', target_rate] elif session['output_format'] == 'ogg': target_codec = 'opus' target_rate = '48000' cmd += ['-c:a', 'libopus', '-compression_level', '0', '-b:a', '192k', '-ar', target_rate] cmd += ['-map_metadata', '1'] if session['output_channel'] == 'stereo': cmd += ['-ac', '2'] else: cmd += ['-ac', '1'] if input_codec == target_codec and input_rate == target_rate: cmd = [ shutil.which('ffmpeg'), '-hide_banner', '-nostats', '-i', ffmpeg_combined_audio, '-f', 'ffmetadata', '-i', ffmpeg_metadata_file, '-map', '0:a', '-map_metadata', '1', '-c', 'copy', '-y', ffmpeg_final_file ] else: cmd += [ '-filter_threads', '0', '-filter_complex_threads', '0', '-af', 'loudnorm=I=-16:LRA=11:TP=-1.5:linear=true,afftdn=nf=-70', '-threads', '0', '-progress', 'pipe:2', '-y', ffmpeg_final_file ] proc_pipe = SubprocessPipe(cmd, is_gui_process=session['is_gui_process'], total_duration=get_audio_duration(ffmpeg_combined_audio), msg='Export') if proc_pipe: if os.path.exists(ffmpeg_final_file) and os.path.getsize(ffmpeg_final_file) > 0: if session['output_format'] in ['mp3', 'm4a', 'm4b', 'mp4']: if session['cover'] is not None: cover_path = session['cover'] msg = f'Adding cover {cover_path} into the final audiobook file...' print(msg) if session['output_format'] == 'mp3': from mutagen.mp3 import MP3 from mutagen.id3 import ID3, APIC, error audio = MP3(ffmpeg_final_file, ID3=ID3) try: audio.add_tags() except error: pass with open(cover_path, 'rb') as img: audio.tags.add(APIC(encoding=3, mime='image/jpeg', type=3, desc='Cover', data=img.read())) elif session['output_format'] in ['mp4', 'm4a', 'm4b']: from mutagen.mp4 import MP4, MP4Cover audio = MP4(ffmpeg_final_file) with open(cover_path, 'rb') as f: cover_data = f.read() audio['covr'] = [MP4Cover(cover_data, imageformat=MP4Cover.FORMAT_JPEG)] if audio: audio.save() final_vtt = f"{Path(ffmpeg_final_file).stem}.vtt" proc_vtt_path = os.path.join(session['process_dir'], final_vtt) final_vtt_path = os.path.join(session['audiobooks_dir'], final_vtt) shutil.move(proc_vtt_path, final_vtt_path) return True else: error = f"{Path(ffmpeg_final_file).name} is corrupted or does not exist" print(error) except Exception as e: error = f'Export failed: {e}' print(error) return False try: session = context.get_session(id) if session: chapter_files = [f for f in os.listdir(session['chapters_dir']) if f.endswith(f'.{default_audio_proc_format}')] chapter_files = sorted(chapter_files, key=lambda x: int(re.search(r'\d+', x).group())) chapter_titles = [c[0] for c in session['chapters']] if len(chapter_files) == 0: print('No block files exists!') return None # Calculate total duration durations = [] for file in chapter_files: filepath = os.path.join(session['chapters_dir'], file) durations.append(get_audio_duration(filepath)) total_duration = sum(durations) exported_files = [] if session['output_split']: part_files = [] part_chapter_indices = [] cur_part = [] cur_indices = [] cur_duration = 0 max_part_duration = int(session['output_split_hours']) * 3600 needs_split = total_duration > (int(session['output_split_hours']) * 2) * 3600 for idx, (file, dur) in enumerate(zip(chapter_files, durations)): if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return None if cur_part and (cur_duration + dur > max_part_duration): part_files.append(cur_part) part_chapter_indices.append(cur_indices) cur_part = [] cur_indices = [] cur_duration = 0 cur_part.append(file) cur_indices.append(idx) cur_duration += dur if cur_part: part_files.append(cur_part) part_chapter_indices.append(cur_indices) temp_export = os.path.join(session['process_dir'], "export") os.makedirs(temp_export, exist_ok=True) for part_idx, (part_file_list, indices) in enumerate(zip(part_files, part_chapter_indices)): with tempfile.TemporaryDirectory(dir=temp_export) as temp_dir: temp_dir = Path(temp_dir) batch_size = 1024 chunk_list = [] total_batches = (len(part_file_list)+batch_size-1)//batch_size iterator = tqdm(range(0,len(part_file_list),batch_size),total=total_batches,desc=f"Part {part_idx+1} batches",unit="batch") for idx,i in enumerate(iterator): if session.get('is_gui_progress') and gr_progress: gr_progress((idx+1)/total_batches,f"Part {part_idx+1} batches") if session.get('cancellation_requested'): msg = 'Cancel requested' print(msg) return None batch = part_file_list[i:i + batch_size] txt = temp_dir / f'chunk_{i:04d}.txt' out = temp_dir / f'chunk_{i:04d}.{default_audio_proc_format}' with open(txt, 'w') as f: for file in batch: path = Path(session['chapters_dir']) / file f.write(f"file '{path.as_posix()}'\n") chunk_list.append((str(txt), str(out), session['is_gui_process'])) with Pool(cpu_count()) as pool: results = pool.starmap(assemble_chunks, chunk_list) if not all(results): error = f'assemble_chunks() One or more chunks failed for part {part_idx+1}.' print(error) return None combined_chapters_file = Path(session['process_dir']) / (f"{get_sanitized(session['metadata']['title'])}_part{part_idx+1}.{default_audio_proc_format}" if needs_split else f"{get_sanitized(session['metadata']['title'])}.{default_audio_proc_format}") final_list = temp_dir / f'part_{part_idx+1:02d}_final.txt' with open(final_list, 'w') as f: for _, chunk_path, _ in chunk_list: f.write(f"file '{Path(chunk_path).as_posix()}'\n") if session.get('is_gui_progress') and gr_progress: gr_progress(1.0,f"Part {part_idx+1} final merge") if not assemble_chunks(str(final_list), str(combined_chapters_file), session['is_gui_process']): error = f'assemble_chunks() Final merge failed for part {part_idx+1}.' print(error) return None metadata_file = Path(session['process_dir']) / f'metadata_part{part_idx+1}.txt' part_chapters = [(chapter_files[i], chapter_titles[i]) for i in indices] generate_ffmpeg_metadata(part_chapters, str(metadata_file), default_audio_proc_format) final_file = Path(session['audiobooks_dir']) / (f"{session['final_name'].rsplit('.', 1)[0]}_part{part_idx+1}.{session['output_format']}" if needs_split else session['final_name']) if export_audio(str(combined_chapters_file), str(metadata_file), str(final_file)): exported_files.append(str(final_file)) else: temp_export = os.path.join(session['process_dir'], "export") os.makedirs(temp_export, exist_ok=True) with tempfile.TemporaryDirectory(dir=temp_export) as temp_dir: txt = os.path.join(temp_dir, 'all_chapters.txt') merged_tmp = os.path.join(temp_dir, f'all.{default_audio_proc_format}') with open(txt, 'w') as f: for file in chapter_files: if session['cancellation_requested']: msg = 'Cancel requested' print(msg) return None path = os.path.join(session['chapters_dir'], file).replace("\\", "/") f.write(f"file '{path}'\n") if not assemble_chunks(txt, merged_tmp, session['is_gui_process']): print("assemble_chunks() Final merge failed.") return None metadata_file = os.path.join(session['process_dir'], 'metadata.txt') all_chapters = list(zip(chapter_files, chapter_titles)) generate_ffmpeg_metadata(all_chapters, metadata_file, default_audio_proc_format) final_file = os.path.join(session['audiobooks_dir'], session['final_name']) if export_audio(merged_tmp, metadata_file, final_file): exported_files.append(final_file) return exported_files if exported_files else None return None except Exception as e: DependencyError(e) return None def assemble_chunks(txt_file:str, out_file:str, is_gui_process:bool)->bool: try: total_duration = 0.0 try: with open(txt_file, 'r') as f: for line in f: if line.strip().startswith("file"): file_path = line.strip().split("file ")[1].strip().strip("'").strip('"') if os.path.exists(file_path): result = subprocess.run( [shutil.which("ffprobe"), "-v", "error", "-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1", file_path], capture_output=True, text=True ) try: total_duration += float(result.stdout.strip()) except ValueError: pass except Exception as e: error = f'assemble_chunks() open file {txt_file} Error: {e}' print(error) return False cmd = [ shutil.which('ffmpeg'), '-hide_banner', '-nostats', '-y', '-safe', '0', '-f', 'concat', '-i', txt_file, '-c:a', default_audio_proc_format, '-map_metadata', '-1', '-threads', '0', out_file ] proc_pipe = SubprocessPipe(cmd, is_gui_process=is_gui_process, total_duration=total_duration, msg='Assemble') if proc_pipe: msg = f'Completed → {out_file}' print(msg) return True else: error = f'Failed (proc_pipe) → {out_file}' return False except subprocess.CalledProcessError as e: DependencyError(e) return False except Exception as e: error = f'assemble_chunks() Error: Failed to process {txt_file} → {out_file}: {e}' print(error) return False def ellipsize_utf8_bytes(s:str, max_bytes:int, ellipsis:str="...")->str: s = "" if s is None else str(s) if max_bytes <= 0: return "" raw = s.encode("utf-8") e = ellipsis.encode("utf-8") if len(raw) <= max_bytes: return s if len(e) >= max_bytes: # return as many bytes of the ellipsis as fit return e[:max_bytes].decode("utf-8", errors="ignore") budget = max_bytes - len(e) out = bytearray() for ch in s: b = ch.encode("utf-8") if len(out) + len(b) > budget: break out.extend(b) return out.decode("utf-8") + ellipsis def sanitize_meta_chapter_title(title:str, max_bytes:int=140)->str: # avoid None and embedded NULs which some muxers accidentally keep title = (title or '').replace('\x00', '') title = title.replace(TTS_SML['pause'], '') return ellipsize_utf8_bytes(title, max_bytes=max_bytes, ellipsis="…") def delete_unused_tmp_dirs(web_dir:str, days:int, id:str)->None: session = context.get_session(id) if session: dir_array = [ tmp_dir, web_dir, os.path.join(models_dir, '__sessions'), os.path.join(voices_dir, '__sessions') ] current_user_dirs = { f"proc-{session['id']}", f"web-{session['id']}", f"voice-{session['id']}", f"model-{session['id']}" } current_time = time.time() threshold_time = current_time - (days * 24 * 60 * 60) # Convert days to seconds for dir_path in dir_array: if os.path.exists(dir_path) and os.path.isdir(dir_path): for dir in os.listdir(dir_path): if dir in current_user_dirs: full_dir_path = os.path.join(dir_path, dir) if os.path.isdir(full_dir_path): try: dir_mtime = os.path.getmtime(full_dir_path) dir_ctime = os.path.getctime(full_dir_path) if dir_mtime < threshold_time and dir_ctime < threshold_time: shutil.rmtree(full_dir_path, ignore_errors=True) msg = f'Deleted expired session: {full_dir_path}' print(msg) except Exception as e: error = f'Error deleting {full_dir_path}: {e}' print(error) def get_compatible_tts_engines(language:str)->list[str]: return [ engine for engine, cfg in default_engine_settings.items() if language in cfg.get('languages', {}) ] def convert_ebook_batch(args:dict)->tuple: if isinstance(args['ebook_list'], list): ebook_list = args['ebook_list'][:] for file in ebook_list: # Use a shallow copy if any(file.endswith(ext) for ext in ebook_formats): args['ebook'] = file print(f'Processing eBook file: {os.path.basename(file)}') progress_status, passed = convert_ebook(args) if passed is False: msg = f'Conversion failed: {progress_status}' print(msg) if not args['is_gui_process']: sys.exit(1) args['ebook_list'].remove(file) reset_session(args['session']) return progress_status, passed else: error = f'the ebooks source is not a list!' print(error) if not args['is_gui_process']: sys.exit(1) def convert_ebook(args:dict)->tuple: try: if args.get('event') == 'blocks_confirmed': return finalize_audiobook(args['id']) else: global context error = None id = None info_session = None if args['language'] is not None: if not os.path.splitext(args['ebook'])[1]: error = f"{args['ebook']} needs a format extension." print(error) return error, False if not os.path.exists(args['ebook']): error = 'File does not exist or Directory empty.' print(error) return error, False try: if len(args['language']) in (2, 3): lang_dict = Lang(args['language']) if lang_dict: args['language'] = lang_dict.pt3 args['language_iso1'] = lang_dict.pt1 else: args['language_iso1'] = None except Exception as e: pass if args['language'] not in language_mapping.keys(): error = 'The language you provided is not (yet) supported' print(error) return error, False if args['session'] is not None: id = str(args['session']) session = context.get_session(id) else: id = str(uuid.uuid4()) session = context.set_session(id) if not context_tracker.start_session(id): error = 'convert_ebook() error: Session initialization failed!' print(error) return error, False session['script_mode'] = str(args['script_mode']) if args.get('script_mode') is not None else NATIVE session['is_gui_process'] = bool(args['is_gui_process']) session['ebook'] = str(args['ebook']) if args.get('ebook') else None session['ebook_list'] = list(args['ebook_list']) if args.get('ebook_list') else None session['chapters_preview'] = bool(args['chapters_preview']) if args.get('chapters_preview') else False session['device'] = str(args['device']) session['language'] = str(args['language']) session['language_iso1'] = str(args['language_iso1']) session['tts_engine'] = str(args['tts_engine']) if args['tts_engine'] is not None else str(get_compatible_tts_engines(args['language'])[0]) session['custom_model'] = os.path.join(session['custom_model_dir'], args['custom_model']) if session['custom_model'] is not None else None session['fine_tuned'] = str(args['fine_tuned']) session['voice'] = str(args['voice']) if args['voice'] is not None else None session['xtts_temperature'] = float(args['xtts_temperature']) session['xtts_length_penalty'] = float(args['xtts_length_penalty']) session['xtts_num_beams'] = int(args['xtts_num_beams']) session['xtts_repetition_penalty'] = float(args['xtts_repetition_penalty']) session['xtts_top_k'] = int(args['xtts_top_k']) session['xtts_top_p'] = float(args['xtts_top_p']) session['xtts_speed'] = float(args['xtts_speed']) session['xtts_enable_text_splitting'] = bool(args['xtts_enable_text_splitting']) session['bark_text_temp'] = float(args['bark_text_temp']) session['bark_waveform_temp'] = float(args['bark_waveform_temp']) session['audiobooks_dir'] = str(args['audiobooks_dir']) if args['audiobooks_dir'] else None session['output_format'] = str(args['output_format']) session['output_channel'] = str(args['output_channel']) session['output_split'] = bool(args['output_split']) session['output_split_hours'] = args['output_split_hours']if args['output_split_hours'] is not None else default_output_split_hours session['model_cache'] = f"{session['tts_engine']}-{session['fine_tuned']}" cleanup_models_cache() if not session['is_gui_process']: session['session_dir'] = os.path.join(tmp_dir, f"proc-{session['id']}") session['voice_dir'] = os.path.join(voices_dir, '__sessions', f"voice-{session['id']}", session['language']) os.makedirs(session['voice_dir'], exist_ok=True) # As now uploaded voice files are in their respective language folder so check if no wav and bark folder are on the voice_dir root from previous versions #[shutil.move(src, os.path.join(session['voice_dir'], os.path.basename(src))) for src in glob(os.path.join(os.path.dirname(session['voice_dir']), '*.wav')) + ([os.path.join(os.path.dirname(session['voice_dir']), 'bark')] if os.path.isdir(os.path.join(os.path.dirname(session['voice_dir']), 'bark')) and not os.path.exists(os.path.join(session['voice_dir'], 'bark')) else [])] session['custom_model_dir'] = os.path.join(models_dir, '__sessions',f"model-{session['id']}") if session['custom_model'] is not None: if not os.path.exists(session['custom_model_dir']): os.makedirs(session['custom_model_dir'], exist_ok=True) src_path = Path(session['custom_model']) src_name = src_path.stem if not os.path.exists(os.path.join(session['custom_model_dir'], src_name)): try: if analyze_uploaded_file(session['custom_model'], default_engine_settings[session['tts_engine']]['internal']['files']): model = extract_custom_model(session['custom_model'], id, default_engine_settings[session['tts_engine']]['files']) if model is not None: session['custom_model'] = model else: error = f"{model} could not be extracted or mandatory files are missing" else: error = f'{os.path.basename(f)} is not a valid model or some required files are missing' except ModuleNotFoundError as e: error = f"No presets module for TTS engine '{session['tts_engine']}': {e}" print(error) if session['voice'] is not None: voice_name = os.path.splitext(os.path.basename(session['voice']))[0].replace('&', 'And') voice_name = get_sanitized(voice_name) final_voice_file = os.path.join(session['voice_dir'], f'{voice_name}.wav') if not os.path.exists(final_voice_file): extractor = VoiceExtractor(session, session['voice'], voice_name) status, msg = extractor.extract_voice() if status: session['voice'] = final_voice_file else: error = f'VoiceExtractor.extract_voice() failed! {msg}' print(error) if error is None: if session['script_mode'] == NATIVE: is_installed = check_programs('Calibre', 'ebook-convert', '--version') if not is_installed: error = f'check_programs() Calibre failed: {e}' is_installed = check_programs('FFmpeg', 'ffmpeg', '-version') if not is_installed: error = f'check_programs() FFMPEG failed: {e}' if error is None: old_session_dir = os.path.join(tmp_dir, f"ebook-{session['id']}") if os.path.isdir(old_session_dir): os.rename(old_session_dir, session['session_dir']) session['final_name'] = get_sanitized(Path(session['ebook']).stem + '.' + session['output_format']) session['process_dir'] = os.path.join(session['session_dir'], f"{hashlib.md5(os.path.join(session['audiobooks_dir'], session['final_name']).encode()).hexdigest()}") session['chapters_dir'] = os.path.join(session['process_dir'], "chapters") session['chapters_dir_sentences'] = os.path.join(session['chapters_dir'], 'sentences') if prepare_dirs(args['ebook'], id): session['filename_noext'] = os.path.splitext(os.path.basename(session['ebook']))[0] msg = '' msg_extra = '' vram_dict = VRAMDetector().detect_vram(session['device']) print(f'vram_dict: {vram_dict}') total_vram_gb = vram_dict.get('total_vram_gb', 0) session['free_vram_gb'] = vram_dict.get('free_vram_gb', 0) if session['free_vram_gb'] == 0: session['free_vram_gb'] = 1.0 msg_extra += '<br/>Memory capacity not detected! restrict to 1GB max' if session['free_vram_gb'] == 0 else f"<br/>Memory detected with {session['free_vram_gb']}GB" else: msg_extra += f"<br/>Free Memory available: {session['free_vram_gb']}GB" if session['free_vram_gb'] > 4.0: if session['tts_engine'] == TTS_ENGINES['BARK']: os.environ['SUNO_USE_SMALL_MODELS'] = 'False' if session['device'] == devices['CUDA']['proc']: session['device'] = session['device'] if devices['CUDA']['found'] else devices['CPU']['proc'] if session['device'] == devices['CPU']['proc']: msg += f'CUDA not supported by the Torch installed!<br/>Read {default_gpu_wiki}<br/>Switching to CPU' elif session['device'] == devices['MPS']['proc']: if not devices['MPS']['found']: session['device'] = devices['CPU']['proc'] msg += f'MPS not supported by the Torch installed!<br/>Read {default_gpu_wiki}<br/>Switching to CPU' elif session['device'] == devices['ROCM']['proc']: session['device'] = session['device'] if devices['ROCM']['found'] else devices['CPU']['proc'] if session['device'] == devices['CPU']['proc']: msg += f'ROCM not supported by the Torch installed!<br/>Read {default_gpu_wiki}<br/>Switching to CPU' elif session['device'] == devices['XPU']['proc']: session['device'] = session['device'] if devices['XPU']['found'] else devices['CPU']['proc'] if session['device'] == devices['CPU']['proc']: msg += f"XPU not supported by the Torch installed!<br/>Read {default_gpu_wiki}<br/>Switching to CPU" if session['tts_engine'] == TTS_ENGINES['BARK']: if session['free_vram_gb'] < 12.0: os.environ["SUNO_OFFLOAD_CPU"] = "True" os.environ["SUNO_USE_SMALL_MODELS"] = "True" msg_extra += f"<br/>Switching BARK to SMALL models" else: os.environ["SUNO_OFFLOAD_CPU"] = "False" os.environ["SUNO_USE_SMALL_MODELS"] = "False" if msg == '': msg = f"Using {session['device'].upper()}" msg += msg_extra; device_vram_required = default_engine_settings[session['tts_engine']]['rating']['RAM'] if session['device'] == devices['CPU']['proc'] else default_engine_settings[session['tts_engine']]['rating']['VRAM'] if float(total_vram_gb) >= float(device_vram_required): if session['is_gui_process']: show_alert({"type": "warning", "msg": msg}) print(msg.replace('<br/>','\n')) session['epub_path'] = os.path.join(session['process_dir'], '__' + session['filename_noext'] + '.epub') if convert2epub(id): epubBook = epub.read_epub(session['epub_path'], {'ignore_ncx': True}) if epubBook: metadata = dict(session['metadata']) for key, value in metadata.items(): data = epubBook.get_metadata('DC', key) if data: for value, attributes in data: metadata[key] = value metadata['language'] = session['language'] metadata['title'] = metadata['title'] = metadata['title'] or Path(session['ebook']).stem.replace('_',' ') metadata['creator'] = False if not metadata['creator'] or metadata['creator'] == 'Unknown' else metadata['creator'] session['metadata'] = metadata try: if len(session['metadata']['language']) == 2: lang_dict = Lang(session['language']) if lang_dict: session['metadata']['language'] = lang_dict.pt3 except Exception as e: pass if session['metadata']['language'] != session['language']: error = f"WARNING!!! language selected {session['language']} differs from the EPUB file language {session['metadata']['language']}" print(error) if session['is_gui_process']: show_alert({"type": "warning", "msg": error}) is_lang_in_tts_engine = ( session.get('tts_engine') in default_engine_settings and session.get('language') in default_engine_settings[session['tts_engine']].get('languages', {}) ) if is_lang_in_tts_engine: session['cover'] = get_cover(epubBook, id) if session['cover']: session['toc'], session['chapters'] = get_chapters(epubBook, id) if session['chapters'] is not None: #if session['chapters_preview']: # return 'confirm_blocks', True #else: # return finalize_audiobook(id) return finalize_audiobook(id) else: error = 'get_chapters() failed! '+session['toc'] else: error = 'get_cover() failed!' else: error = f"language {session['language']} not supported by {session['tts_engine']}!" else: error = 'epubBook.read_epub failed!' else: error = 'convert2epub() failed!' else: error = f"Your device has not enough memory ({total_vram_gb}GB) to run {session['tts_engine']} engine ({device_vram_required}GB)" else: error = f"Temporary directory {session['process_dir']} not removed due to failure." else: error = f"Language {args['language']} is not supported." if session['cancellation_requested']: error = 'Cancelled' if error is None else error + '. Cancelled' print(error) if session['is_gui_process']: show_alert({"type": "warning", "msg": error}) return error, False except Exception as e: print(f'convert_ebook() Exception: {e}') return e, False def finalize_audiobook(id:str)->tuple: session = context.get_session(id) if session: if session['chapters'] is not None: if convert_chapters2audio(session['id']): msg = 'Conversion successful. Combining sentences and chapters...' show_alert({"type": "info", "msg": msg}) exported_files = combine_audio_chapters(session['id']) if exported_files is not None: progress_status = f'Audiobook {", ".join(os.path.basename(f) for f in exported_files)} created!' session['audiobook'] = exported_files[-1] if not session['is_gui_process']: process_dir = os.path.join(session['session_dir'], f"{hashlib.md5(os.path.join(session['audiobooks_dir'], session['audiobook']).encode()).hexdigest()}") shutil.rmtree(process_dir, ignore_errors=True) info_session = f"\n*********** Session: {id} **************\nStore it in case of interruption, crash, reuse of custom model or custom voice,\nyou can resume the conversion with --session option" print(info_session) return progress_status, True else: error = 'combine_audio_chapters() error: exported_files not created!' else: error = 'convert_chapters2audio() failed!' else: error = 'get_chapters() failed!' return error, False def restore_session_from_data(data:dict, session:dict)->None: try: for key, value in data.items(): if key in session: if isinstance(value, dict) and isinstance(session[key], dict): restore_session_from_data(value, session[key]) else: if value is None and session[key] is not None: continue session[key] = value except Exception as e: DependencyError(e) def cleanup_session(req:gr.Request)->None: socket_hash = req.session_hash if any(socket_hash in session for session in context.sessions.values()): session_id = context.find_id_by_hash(socket_hash) context_tracker.end_session(session_id, socket_hash) def reset_session(id:str)->None: session = context.get_session(id) data = { "ebook": None, "toc": None, "chapters_dir": None, "chapters_dir_sentences": None, "epub_path": None, "filename_noext": None, "chapters": None, "cover": None, "status": None, "progress": 0, "duration": 0, "playback_time": 0, "cancellation_requested": False, "event": None, "metadata": { "title": None, "creator": None, "contributor": None, "language": None, "identifier": None, "publisher": None, "date": None, "description": None, "subject": None, "rights": None, "format": None, "type": None, "coverage": None, "relation": None, "Source": None, "Modified": None } } restore_session_from_data(data, session) def cleanup_models_cache()->None: try: active_models = { cache for session in context.sessions.values() for cache in (session.get('model_cache'), session.get('model_zs_cache'), session.get('stanza_cache')) if cache is not None } for key in list(loaded_tts.keys()): if key not in active_models: del loaded_tts[key] gc.collect() except Exception as e: error = f"cleanup_models_cache() error: {e}" print(error) def show_alert(state:dict)->None: if isinstance(state, dict): if state['type'] is not None: if state['type'] == 'error': gr.Error(state['msg']) elif state['type'] == 'warning': gr.Warning(state['msg']) elif state['type'] == 'info': gr.Info(state['msg']) elif state['type'] == 'success': gr.Success(state['msg']) def alert_exception(error:str, id:str|None)->None: if id is not None: session = context.get_session(id) if session: session['status'] = 'ready' print(error) gr.Error(error) DependencyError(error) def get_all_ip_addresses()->list: ip_addresses = [] for interface, addresses in psutil.net_if_addrs().items(): for address in addresses: if address.family in [socket.AF_INET, socket.AF_INET6]: ip_addresses.append(address.address) return ip_addresses