Files
ebook2audiobook/lib/classes/tts_engines/bark.py
unknown 398aa28af1 ...
2025-12-28 15:27:37 -08:00

260 lines
14 KiB
Python

from lib.classes.tts_engines.common.headers import *
from lib.classes.tts_engines.common.preset_loader import load_engine_presets
class Bark(TTSUtils, TTSRegistry, name='bark'):
def __init__(self, session:DictProxy):
try:
self.session = session
self.cache_dir = tts_dir
self.speakers_path = None
self.tts_key = self.session['model_cache']
self.tts_zs_key = default_vc_model.rsplit('/',1)[-1]
self.pth_voice_file = None
self.sentences_total_time = 0.0
self.sentence_idx = 1
self.resampler_cache = {}
self.audio_segments = []
self.models = load_engine_presets(self.session['tts_engine'])
self.params = {}
self.params['samplerate'] = self.models[self.session['fine_tuned']]['samplerate']
self.vtt_path = os.path.join(self.session['process_dir'],Path(self.session['final_name']).stem+'.vtt')
using_gpu = self.session['device'] != devices['CPU']['proc']
enough_vram = self.session['free_vram_gb'] > 4.0
seed = 0
#random.seed(seed)
#np.random.seed(seed)
torch.manual_seed(seed)
has_cuda = (torch.version.cuda is not None and torch.cuda.is_available())
if has_cuda:
self._apply_cuda_policy(using_gpu=using_gpu, enough_vram=enough_vram, seed=seed)
self.xtts_speakers = self._load_xtts_builtin_list()
self.engine = self._load_engine()
self.engine_zs = self._load_engine_zs()
except Exception as e:
error = f'__init__() error: {e}'
raise ValueError(error)
def _load_engine(self)->Any:
try:
msg = f"Loading TTS {self.tts_key} model, it takes a while, please be patient..."
print(msg)
self._cleanup_memory()
engine = loaded_tts.get(self.tts_key, False)
if not engine:
if self.session['custom_model'] is not None:
msg = f"{self.session['tts_engine']} custom model not implemented yet!"
print(msg)
else:
"""
hf_repo = self.models[self.session['fine_tuned']]['repo']
hf_sub = self.models[self.session['fine_tuned']]['sub']
text_model_path = hf_hub_download(repo_id=hf_repo, filename=f"{hf_sub}{self.models[self.session['fine_tuned']]['files'][0]}", cache_dir=self.cache_dir)
coarse_model_path = hf_hub_download(repo_id=hf_repo, filename=f"{hf_sub}{self.models[self.session['fine_tuned']]['files'][1]}", cache_dir=self.cache_dir)
fine_model_path = hf_hub_download(repo_id=hf_repo, filename=f"{hf_sub}{self.models[self.session['fine_tuned']]['files'][2]}", cache_dir=self.cache_dir)
checkpoint_dir = os.path.dirname(text_model_path)
engine = self._load_checkpoint(tts_engine=self.session['tts_engine'], key=self.tts_key, checkpoint_dir=checkpoint_dir)
"""
model_path = self.models[self.session['fine_tuned']]['repo']
engine = self._load_api(self.tts_key, model_path)
if engine and engine is not None:
msg = f'TTS {self.tts_key} Loaded!'
return engine
else:
error = '_load_engine() failed!'
raise ValueError(error)
except Exception as e:
error = f'_load_engine() error: {e}'
raise ValueError(error)
"""
def _check_bark_npz(self, voice_path:str, bark_dir:str, speaker:str)->bool:
try:
if self.session['language'] in default_engine_settings[TTS_ENGINES['BARK']].get('languages', {}):
pth_voice_dir = os.path.join(bark_dir, speaker)
pth_voice_file = os.path.join(pth_voice_dir,f'{speaker}.pth')
if os.path.exists(pth_voice_file):
return True
else:
os.makedirs(pth_voice_dir,exist_ok=True)
key = f"{TTS_ENGINES['BARK']}-internal"
default_text_file = os.path.join(voices_dir, self.session['language'], 'default.txt')
default_text = Path(default_text_file).read_text(encoding="utf-8")
fine_tuned_params = {
key.removeprefix("bark_"):cast_type(self.session[key])
for key,cast_type in{
"bark_text_temp":float,
"bark_waveform_temp":float
}.items()
if self.session.get(key) is not None
}
with torch.no_grad():
result = self.engine.synthesize(
default_text,
speaker_wav=voice_path,
speaker=speaker,
voice_dir=pth_voice_dir,
**fine_tuned_params
)
del result
msg = f"Saved file: {pth_voice_file}"
print(msg)
return True
else:
return True
except Exception as e:
error = f'_check_bark_npz() error: {e}'
print(error)
return False
"""
def convert(self, sentence_index:int, sentence:str)->bool:
try:
speaker = None
audio_sentence = False
self.params['voice_path'] = (
self.session['voice'] if self.session['voice'] is not None
else self.models[self.session['fine_tuned']]['voice']
)
if self.params['voice_path'] is not None:
speaker = re.sub(r'\.wav$', '', os.path.basename(self.params['voice_path']))
if self.params['voice_path'] not in default_engine_settings[TTS_ENGINES['BARK']]['voices'].keys() and self.session['custom_model_dir'] not in self.params['voice_path']:
self.session['voice'] = self.params['voice_path'] = self._check_xtts_builtin_speakers(self.params['voice_path'], speaker)
if not self.params['voice_path']:
msg = f"Could not create the builtin speaker selected voice in {self.session['language']}"
print(msg)
return False
if self.engine:
device = devices['CUDA']['proc'] if self.session['device'] in ['cuda', 'jetson'] else self.session['device']
self.engine.to(device)
final_sentence_file = os.path.join(self.session['chapters_dir_sentences'], f'{sentence_index}.{default_audio_proc_format}')
if sentence == TTS_SML['break']:
silence_time = int(np.random.uniform(0.3, 0.6) * 100) / 100
break_tensor = torch.zeros(1, int(self.params['samplerate'] * silence_time)) # 0.4 to 0.7 seconds
self.audio_segments.append(break_tensor.clone())
return True
elif not sentence.replace('', '').strip() or sentence == TTS_SML['pause']:
silence_time = int(np.random.uniform(1.0, 1.8) * 100) / 100
pause_tensor = torch.zeros(1, int(self.params['samplerate'] * silence_time)) # 1.0 to 1.8 seconds
self.audio_segments.append(pause_tensor.clone())
return True
else:
if sentence.endswith("'"):
sentence = sentence[:-1]
trim_audio_buffer = 0.002
sentence += '' if sentence[-1].isalnum() else ''
'''
[laughter]
[laughs]
[sighs]
[music]
[gasps]
[clears throat]
— or ... for hesitations
♪ for song lyrics
CAPITALIZATION for emphasis of a word
[MAN] and [WOMAN] to bias Bark toward male and female speakers, respectively
'''
if speaker in default_engine_settings[self.session['tts_engine']]['voices'].keys():
bark_dir = default_engine_settings[self.session['tts_engine']]['speakers_path']
else:
bark_dir = os.path.join(os.path.dirname(self.params['voice_path']), 'bark')
"""
if not self._check_bark_npz(self.params['voice_path'], bark_dir, speaker):
error = 'Could not create pth voice file!'
print(error)
return False
"""
pth_voice_dir = os.path.join(bark_dir, speaker)
pth_voice_file = os.path.join(bark_dir, speaker, f'{speaker}.pth')
self.engine.synthesizer.voice_dir = pth_voice_dir
tts_dyn_params = {}
if not os.path.exists(pth_voice_file) or speaker not in self.engine.speakers:
tts_dyn_params['speaker_wav'] = self.params['voice_path']
fine_tuned_params = {
key.removeprefix("bark_"): cast_type(self.session[key])
for key, cast_type in {
"bark_text_temp": float,
"bark_waveform_temp": float
}.items()
if self.session.get(key) is not None
}
with torch.no_grad():
"""
result = self.engine.synthesize(
sentence,
#speaker_wav=self.params['voice_path'],
speaker=speaker,
voice_dir=pth_voice_dir,
**fine_tuned_params
)
"""
audio_sentence = self.engine.tts(
text=sentence,
speaker=speaker,
voice_dir=pth_voice_dir,
**tts_dyn_params,
**fine_tuned_params
)
#audio_sentence = result.get('wav')
#if is_audio_data_valid(audio_sentence):
# audio_sentence = audio_sentence.tolist()
if is_audio_data_valid(audio_sentence):
if isinstance(audio_sentence, torch.Tensor):
audio_tensor = audio_sentence.detach().cpu().unsqueeze(0)
elif isinstance(audio_sentence, np.ndarray):
audio_tensor = torch.from_numpy(audio_sentence).unsqueeze(0)
audio_tensor = audio_tensor.cpu()
elif isinstance(audio_sentence, (list, tuple)):
audio_tensor = torch.tensor(audio_sentence, dtype=torch.float32).unsqueeze(0)
audio_tensor = audio_tensor.cpu()
else:
error = f"{self.session['tts_engine']}: Unsupported wav type: {type(audio_sentence)}"
print(error)
return False
if sentence[-1].isalnum() or sentence[-1] == '':
audio_tensor = trim_audio(audio_tensor.squeeze(), self.params['samplerate'], 0.001, trim_audio_buffer).unsqueeze(0)
if audio_tensor is not None and audio_tensor.numel() > 0:
self.audio_segments.append(audio_tensor)
if not re.search(r'\w$', sentence, flags=re.UNICODE) and sentence[-1] != '':
silence_time = int(np.random.uniform(0.3, 0.6) * 100) / 100
break_tensor = torch.zeros(1, int(self.params['samplerate'] * silence_time))
self.audio_segments.append(break_tensor.clone())
if self.audio_segments:
audio_tensor = torch.cat(self.audio_segments, dim=-1)
start_time = self.sentences_total_time
duration = round((audio_tensor.shape[-1] / self.params['samplerate']), 2)
end_time = start_time + duration
self.sentences_total_time = end_time
sentence_obj = {
"start": start_time,
"end": end_time,
"text": sentence,
"resume_check": self.sentence_idx
}
self.sentence_idx = self._append_sentence2vtt(sentence_obj, self.vtt_path)
if self.sentence_idx:
torchaudio.save(final_sentence_file, audio_tensor, self.params['samplerate'], format=default_audio_proc_format)
del audio_tensor
self._cleanup_memory()
self.audio_segments = []
if os.path.exists(final_sentence_file):
return True
else:
error = f"Cannot create {final_sentence_file}"
print(error)
return False
else:
error = f"audio_tensor not valid"
print(error)
return False
else:
error = f"audio_sentence not valid"
print(error)
return False
else:
error = f"TTS engine {self.session['tts_engine']} failed to load!"
print(error)
return False
except Exception as e:
error = f'Bark.convert(): {e}'
raise ValueError(e)
return False