mirror of
https://github.com/dalek-cryptography/ed25519-dalek.git
synced 2026-01-09 19:18:00 -05:00
The original v2.0.0 release has been yanked. This release includes a different infallible parsing API which can be used to eliminate some usages of `unwrap()`.
601 lines
22 KiB
Rust
601 lines
22 KiB
Rust
// -*- mode: rust; -*-
|
|
//
|
|
// This file is part of ed25519-dalek.
|
|
// Copyright (c) 2017-2019 isis lovecruft
|
|
// See LICENSE for licensing information.
|
|
//
|
|
// Authors:
|
|
// - isis agora lovecruft <isis@patternsinthevoid.net>
|
|
|
|
//! Integration tests for ed25519-dalek.
|
|
|
|
use curve25519_dalek;
|
|
|
|
use ed25519_dalek::*;
|
|
|
|
use hex::FromHex;
|
|
#[cfg(feature = "digest")]
|
|
use hex_literal::hex;
|
|
|
|
#[cfg(test)]
|
|
mod vectors {
|
|
use super::*;
|
|
|
|
use curve25519_dalek::{
|
|
constants::ED25519_BASEPOINT_POINT,
|
|
edwards::{CompressedEdwardsY, EdwardsPoint},
|
|
scalar::Scalar,
|
|
traits::IsIdentity,
|
|
};
|
|
use sha2::{digest::Digest, Sha512};
|
|
|
|
use std::{
|
|
convert::TryFrom,
|
|
fs::File,
|
|
io::{BufRead, BufReader},
|
|
ops::Neg,
|
|
};
|
|
|
|
// TESTVECTORS is taken from sign.input.gz in agl's ed25519 Golang
|
|
// package. It is a selection of test cases from
|
|
// http://ed25519.cr.yp.to/python/sign.input
|
|
#[test]
|
|
fn against_reference_implementation() {
|
|
// TestGolden
|
|
let mut line: String;
|
|
let mut lineno: usize = 0;
|
|
|
|
let f = File::open("TESTVECTORS");
|
|
if f.is_err() {
|
|
println!(
|
|
"This test is only available when the code has been cloned \
|
|
from the git repository, since the TESTVECTORS file is large \
|
|
and is therefore not included within the distributed crate."
|
|
);
|
|
panic!();
|
|
}
|
|
let file = BufReader::new(f.unwrap());
|
|
|
|
for l in file.lines() {
|
|
lineno += 1;
|
|
line = l.unwrap();
|
|
|
|
let parts: Vec<&str> = line.split(':').collect();
|
|
assert_eq!(parts.len(), 5, "wrong number of fields in line {}", lineno);
|
|
|
|
let sec_bytes: Vec<u8> = FromHex::from_hex(&parts[0]).unwrap();
|
|
let pub_bytes: Vec<u8> = FromHex::from_hex(&parts[1]).unwrap();
|
|
let msg_bytes: Vec<u8> = FromHex::from_hex(&parts[2]).unwrap();
|
|
let sig_bytes: Vec<u8> = FromHex::from_hex(&parts[3]).unwrap();
|
|
|
|
let sec_bytes = &sec_bytes[..SECRET_KEY_LENGTH].try_into().unwrap();
|
|
let pub_bytes = &pub_bytes[..PUBLIC_KEY_LENGTH].try_into().unwrap();
|
|
|
|
let signing_key = SigningKey::from_bytes(sec_bytes);
|
|
let expected_verifying_key = VerifyingKey::from_bytes(pub_bytes).unwrap();
|
|
assert_eq!(expected_verifying_key, signing_key.verifying_key());
|
|
|
|
// The signatures in the test vectors also include the message
|
|
// at the end, but we just want R and S.
|
|
let sig1: Signature = Signature::try_from(&sig_bytes[..64]).unwrap();
|
|
let sig2: Signature = signing_key.sign(&msg_bytes);
|
|
|
|
assert!(sig1 == sig2, "Signature bytes not equal on line {}", lineno);
|
|
assert!(
|
|
signing_key.verify(&msg_bytes, &sig2).is_ok(),
|
|
"Signature verification failed on line {}",
|
|
lineno
|
|
);
|
|
assert!(
|
|
expected_verifying_key
|
|
.verify_strict(&msg_bytes, &sig2)
|
|
.is_ok(),
|
|
"Signature strict verification failed on line {}",
|
|
lineno
|
|
);
|
|
}
|
|
}
|
|
|
|
// From https://tools.ietf.org/html/rfc8032#section-7.3
|
|
#[cfg(feature = "digest")]
|
|
#[test]
|
|
fn ed25519ph_rf8032_test_vector_prehash() {
|
|
let sec_bytes = hex!("833fe62409237b9d62ec77587520911e9a759cec1d19755b7da901b96dca3d42");
|
|
let pub_bytes = hex!("ec172b93ad5e563bf4932c70e1245034c35467ef2efd4d64ebf819683467e2bf");
|
|
let msg_bytes = hex!("616263");
|
|
let sig_bytes = hex!("98a70222f0b8121aa9d30f813d683f809e462b469c7ff87639499bb94e6dae4131f85042463c2a355a2003d062adf5aaa10b8c61e636062aaad11c2a26083406");
|
|
|
|
let signing_key = SigningKey::from_bytes(&sec_bytes);
|
|
let expected_verifying_key = VerifyingKey::from_bytes(&pub_bytes).unwrap();
|
|
assert_eq!(expected_verifying_key, signing_key.verifying_key());
|
|
let sig1 = Signature::try_from(&sig_bytes[..]).unwrap();
|
|
|
|
let mut prehash_for_signing = Sha512::default();
|
|
let mut prehash_for_verifying = Sha512::default();
|
|
|
|
prehash_for_signing.update(&msg_bytes[..]);
|
|
prehash_for_verifying.update(&msg_bytes[..]);
|
|
|
|
let sig2: Signature = signing_key
|
|
.sign_prehashed(prehash_for_signing, None)
|
|
.unwrap();
|
|
|
|
assert!(
|
|
sig1 == sig2,
|
|
"Original signature from test vectors doesn't equal signature produced:\
|
|
\noriginal:\n{:?}\nproduced:\n{:?}",
|
|
sig1,
|
|
sig2
|
|
);
|
|
assert!(
|
|
signing_key
|
|
.verify_prehashed(prehash_for_verifying.clone(), None, &sig2)
|
|
.is_ok(),
|
|
"Could not verify ed25519ph signature!"
|
|
);
|
|
assert!(
|
|
expected_verifying_key
|
|
.verify_prehashed_strict(prehash_for_verifying, None, &sig2)
|
|
.is_ok(),
|
|
"Could not strict-verify ed25519ph signature!"
|
|
);
|
|
}
|
|
|
|
//
|
|
// The remaining items in this mod are for the repudiation tests
|
|
//
|
|
|
|
// Taken from curve25519_dalek::constants::EIGHT_TORSION[4]
|
|
const EIGHT_TORSION_4: [u8; 32] = [
|
|
236, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
|
|
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 127,
|
|
];
|
|
|
|
// Computes the prehashed or non-prehashed challenge, depending on whether context is given
|
|
fn compute_challenge(
|
|
message: &[u8],
|
|
pub_key: &EdwardsPoint,
|
|
signature_r: &EdwardsPoint,
|
|
context: Option<&[u8]>,
|
|
) -> Scalar {
|
|
let mut h = Sha512::default();
|
|
if let Some(c) = context {
|
|
h.update(b"SigEd25519 no Ed25519 collisions");
|
|
h.update(&[1]);
|
|
h.update(&[c.len() as u8]);
|
|
h.update(c);
|
|
}
|
|
h.update(&signature_r.compress().as_bytes());
|
|
h.update(&pub_key.compress().as_bytes()[..]);
|
|
h.update(&message);
|
|
Scalar::from_hash(h)
|
|
}
|
|
|
|
fn serialize_signature(r: &EdwardsPoint, s: &Scalar) -> Vec<u8> {
|
|
[&r.compress().as_bytes()[..], &s.as_bytes()[..]].concat()
|
|
}
|
|
|
|
const WEAK_PUBKEY: CompressedEdwardsY = CompressedEdwardsY(EIGHT_TORSION_4);
|
|
|
|
// Pick a random Scalar
|
|
fn non_null_scalar() -> Scalar {
|
|
let mut rng = rand::rngs::OsRng;
|
|
let mut s_candidate = Scalar::random(&mut rng);
|
|
while s_candidate == Scalar::ZERO {
|
|
s_candidate = Scalar::random(&mut rng);
|
|
}
|
|
s_candidate
|
|
}
|
|
|
|
fn pick_r(s: Scalar) -> EdwardsPoint {
|
|
let r0 = s * ED25519_BASEPOINT_POINT;
|
|
// Pick a torsion point of order 2
|
|
r0 + WEAK_PUBKEY.decompress().unwrap().neg()
|
|
}
|
|
|
|
// Tests that verify_strict() rejects small-order pubkeys. We test this by explicitly
|
|
// constructing a pubkey-signature pair that verifies with respect to two distinct messages.
|
|
// This should be accepted by verify(), but rejected by verify_strict().
|
|
#[test]
|
|
fn repudiation() {
|
|
let message1 = b"Send 100 USD to Alice";
|
|
let message2 = b"Send 100000 USD to Alice";
|
|
|
|
let mut s: Scalar = non_null_scalar();
|
|
let pubkey = WEAK_PUBKEY.decompress().unwrap();
|
|
let mut r = pick_r(s);
|
|
|
|
// Find an R such that
|
|
// H(R || A || M₁) · A == A == H(R || A || M₂) · A
|
|
// This happens with high probability when A is low order.
|
|
while !(pubkey.neg() + compute_challenge(message1, &pubkey, &r, None) * pubkey)
|
|
.is_identity()
|
|
|| !(pubkey.neg() + compute_challenge(message2, &pubkey, &r, None) * pubkey)
|
|
.is_identity()
|
|
{
|
|
// We pick an s and let R = sB - A where B is the basepoint
|
|
s = non_null_scalar();
|
|
r = pick_r(s);
|
|
}
|
|
|
|
// At this point, both verification equations hold:
|
|
// sB = R + H(R || A || M₁) · A
|
|
// = R + H(R || A || M₂) · A
|
|
// Check that this is true
|
|
let signature = serialize_signature(&r, &s);
|
|
let vk = VerifyingKey::from_bytes(&pubkey.compress().as_bytes()).unwrap();
|
|
let sig = Signature::try_from(&signature[..]).unwrap();
|
|
assert!(vk.verify(message1, &sig).is_ok());
|
|
assert!(vk.verify(message2, &sig).is_ok());
|
|
|
|
// Now check that the sigs fail under verify_strict. This is because verify_strict rejects
|
|
// small order pubkeys.
|
|
assert!(vk.verify_strict(message1, &sig).is_err());
|
|
assert!(vk.verify_strict(message2, &sig).is_err());
|
|
}
|
|
|
|
// Identical to repudiation() above, but testing verify_prehashed against
|
|
// verify_prehashed_strict. See comments above for a description of what's happening.
|
|
#[cfg(feature = "digest")]
|
|
#[test]
|
|
fn repudiation_prehash() {
|
|
let message1 = Sha512::new().chain_update(b"Send 100 USD to Alice");
|
|
let message2 = Sha512::new().chain_update(b"Send 100000 USD to Alice");
|
|
let message1_bytes = message1.clone().finalize();
|
|
let message2_bytes = message2.clone().finalize();
|
|
|
|
let mut s: Scalar = non_null_scalar();
|
|
let pubkey = WEAK_PUBKEY.decompress().unwrap();
|
|
let mut r = pick_r(s);
|
|
let context_str = Some(&b"edtest"[..]);
|
|
|
|
while !(pubkey.neg()
|
|
+ compute_challenge(&message1_bytes, &pubkey, &r, context_str) * pubkey)
|
|
.is_identity()
|
|
|| !(pubkey.neg()
|
|
+ compute_challenge(&message2_bytes, &pubkey, &r, context_str) * pubkey)
|
|
.is_identity()
|
|
{
|
|
s = non_null_scalar();
|
|
r = pick_r(s);
|
|
}
|
|
|
|
// Check that verify_prehashed succeeds on both sigs
|
|
let signature = serialize_signature(&r, &s);
|
|
let vk = VerifyingKey::from_bytes(&pubkey.compress().as_bytes()).unwrap();
|
|
let sig = Signature::try_from(&signature[..]).unwrap();
|
|
assert!(vk
|
|
.verify_prehashed(message1.clone(), context_str, &sig)
|
|
.is_ok());
|
|
assert!(vk
|
|
.verify_prehashed(message2.clone(), context_str, &sig)
|
|
.is_ok());
|
|
|
|
// Check that verify_prehashed_strict fails on both sigs
|
|
assert!(vk
|
|
.verify_prehashed_strict(message1.clone(), context_str, &sig)
|
|
.is_err());
|
|
assert!(vk
|
|
.verify_prehashed_strict(message2.clone(), context_str, &sig)
|
|
.is_err());
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "rand_core")]
|
|
mod integrations {
|
|
use super::*;
|
|
use rand::rngs::OsRng;
|
|
#[cfg(feature = "digest")]
|
|
use sha2::Sha512;
|
|
use std::collections::HashMap;
|
|
|
|
#[test]
|
|
fn sign_verify() {
|
|
// TestSignVerify
|
|
let signing_key: SigningKey;
|
|
let good_sig: Signature;
|
|
let bad_sig: Signature;
|
|
|
|
let good: &[u8] = "test message".as_bytes();
|
|
let bad: &[u8] = "wrong message".as_bytes();
|
|
|
|
let mut csprng = OsRng;
|
|
|
|
signing_key = SigningKey::generate(&mut csprng);
|
|
let verifying_key = signing_key.verifying_key();
|
|
good_sig = signing_key.sign(&good);
|
|
bad_sig = signing_key.sign(&bad);
|
|
|
|
assert!(
|
|
signing_key.verify(&good, &good_sig).is_ok(),
|
|
"Verification of a valid signature failed!"
|
|
);
|
|
assert!(
|
|
verifying_key.verify_strict(&good, &good_sig).is_ok(),
|
|
"Strict verification of a valid signature failed!"
|
|
);
|
|
assert!(
|
|
signing_key.verify(&good, &bad_sig).is_err(),
|
|
"Verification of a signature on a different message passed!"
|
|
);
|
|
assert!(
|
|
verifying_key.verify_strict(&good, &bad_sig).is_err(),
|
|
"Strict verification of a signature on a different message passed!"
|
|
);
|
|
assert!(
|
|
signing_key.verify(&bad, &good_sig).is_err(),
|
|
"Verification of a signature on a different message passed!"
|
|
);
|
|
assert!(
|
|
verifying_key.verify_strict(&bad, &good_sig).is_err(),
|
|
"Strict verification of a signature on a different message passed!"
|
|
);
|
|
}
|
|
|
|
#[cfg(feature = "digest")]
|
|
#[test]
|
|
fn ed25519ph_sign_verify() {
|
|
let signing_key: SigningKey;
|
|
let good_sig: Signature;
|
|
let bad_sig: Signature;
|
|
|
|
let good: &[u8] = b"test message";
|
|
let bad: &[u8] = b"wrong message";
|
|
|
|
let mut csprng = OsRng;
|
|
|
|
// ugh… there's no `impl Copy for Sha512`… i hope we can all agree these are the same hashes
|
|
let mut prehashed_good1: Sha512 = Sha512::default();
|
|
prehashed_good1.update(good);
|
|
let mut prehashed_good2: Sha512 = Sha512::default();
|
|
prehashed_good2.update(good);
|
|
let mut prehashed_good3: Sha512 = Sha512::default();
|
|
prehashed_good3.update(good);
|
|
|
|
let mut prehashed_bad1: Sha512 = Sha512::default();
|
|
prehashed_bad1.update(bad);
|
|
let mut prehashed_bad2: Sha512 = Sha512::default();
|
|
prehashed_bad2.update(bad);
|
|
|
|
let context: &[u8] = b"testing testing 1 2 3";
|
|
|
|
signing_key = SigningKey::generate(&mut csprng);
|
|
let verifying_key = signing_key.verifying_key();
|
|
good_sig = signing_key
|
|
.sign_prehashed(prehashed_good1, Some(context))
|
|
.unwrap();
|
|
bad_sig = signing_key
|
|
.sign_prehashed(prehashed_bad1, Some(context))
|
|
.unwrap();
|
|
|
|
assert!(
|
|
signing_key
|
|
.verify_prehashed(prehashed_good2.clone(), Some(context), &good_sig)
|
|
.is_ok(),
|
|
"Verification of a valid signature failed!"
|
|
);
|
|
assert!(
|
|
verifying_key
|
|
.verify_prehashed_strict(prehashed_good2, Some(context), &good_sig)
|
|
.is_ok(),
|
|
"Strict verification of a valid signature failed!"
|
|
);
|
|
assert!(
|
|
signing_key
|
|
.verify_prehashed(prehashed_good3.clone(), Some(context), &bad_sig)
|
|
.is_err(),
|
|
"Verification of a signature on a different message passed!"
|
|
);
|
|
assert!(
|
|
verifying_key
|
|
.verify_prehashed_strict(prehashed_good3, Some(context), &bad_sig)
|
|
.is_err(),
|
|
"Strict verification of a signature on a different message passed!"
|
|
);
|
|
assert!(
|
|
signing_key
|
|
.verify_prehashed(prehashed_bad2.clone(), Some(context), &good_sig)
|
|
.is_err(),
|
|
"Verification of a signature on a different message passed!"
|
|
);
|
|
assert!(
|
|
verifying_key
|
|
.verify_prehashed_strict(prehashed_bad2, Some(context), &good_sig)
|
|
.is_err(),
|
|
"Strict verification of a signature on a different message passed!"
|
|
);
|
|
}
|
|
|
|
#[cfg(feature = "batch")]
|
|
#[test]
|
|
fn verify_batch_seven_signatures() {
|
|
let messages: [&[u8]; 7] = [
|
|
b"Watch closely everyone, I'm going to show you how to kill a god.",
|
|
b"I'm not a cryptographer I just encrypt a lot.",
|
|
b"Still not a cryptographer.",
|
|
b"This is a test of the tsunami alert system. This is only a test.",
|
|
b"Fuck dumbin' it down, spit ice, skip jewellery: Molotov cocktails on me like accessories.",
|
|
b"Hey, I never cared about your bucks, so if I run up with a mask on, probably got a gas can too.",
|
|
b"And I'm not here to fill 'er up. Nope, we came to riot, here to incite, we don't want any of your stuff.", ];
|
|
let mut csprng = OsRng;
|
|
let mut signing_keys: Vec<SigningKey> = Vec::new();
|
|
let mut signatures: Vec<Signature> = Vec::new();
|
|
|
|
for i in 0..messages.len() {
|
|
let signing_key: SigningKey = SigningKey::generate(&mut csprng);
|
|
signatures.push(signing_key.sign(&messages[i]));
|
|
signing_keys.push(signing_key);
|
|
}
|
|
let verifying_keys: Vec<VerifyingKey> =
|
|
signing_keys.iter().map(|key| key.verifying_key()).collect();
|
|
|
|
let result = verify_batch(&messages, &signatures, &verifying_keys);
|
|
|
|
assert!(result.is_ok());
|
|
}
|
|
|
|
#[test]
|
|
fn public_key_hash_trait_check() {
|
|
let mut csprng = OsRng {};
|
|
let secret: SigningKey = SigningKey::generate(&mut csprng);
|
|
let public_from_secret: VerifyingKey = (&secret).into();
|
|
|
|
let mut m = HashMap::new();
|
|
m.insert(public_from_secret, "Example_Public_Key");
|
|
|
|
m.insert(public_from_secret, "Updated Value");
|
|
|
|
let (k, v) = m.get_key_value(&public_from_secret).unwrap();
|
|
assert_eq!(k, &public_from_secret);
|
|
assert_eq!(v.clone(), "Updated Value");
|
|
assert_eq!(m.len(), 1usize);
|
|
|
|
let second_secret: SigningKey = SigningKey::generate(&mut csprng);
|
|
let public_from_second_secret: VerifyingKey = (&second_secret).into();
|
|
assert_ne!(public_from_secret, public_from_second_secret);
|
|
m.insert(public_from_second_secret, "Second public key");
|
|
|
|
let (k, v) = m.get_key_value(&public_from_second_secret).unwrap();
|
|
assert_eq!(k, &public_from_second_secret);
|
|
assert_eq!(v.clone(), "Second public key");
|
|
assert_eq!(m.len(), 2usize);
|
|
}
|
|
}
|
|
|
|
#[cfg(all(test, feature = "serde"))]
|
|
#[derive(Debug, serde::Serialize, serde::Deserialize)]
|
|
#[serde(crate = "serde")]
|
|
struct Demo {
|
|
signing_key: SigningKey,
|
|
}
|
|
|
|
#[cfg(all(test, feature = "serde"))]
|
|
mod serialisation {
|
|
use super::*;
|
|
|
|
// The size for bincode to serialize the length of a byte array.
|
|
static BINCODE_INT_LENGTH: usize = 8;
|
|
|
|
static PUBLIC_KEY_BYTES: [u8; PUBLIC_KEY_LENGTH] = [
|
|
130, 039, 155, 015, 062, 076, 188, 063, 124, 122, 026, 251, 233, 253, 225, 220, 014, 041,
|
|
166, 120, 108, 035, 254, 077, 160, 083, 172, 058, 219, 042, 086, 120,
|
|
];
|
|
|
|
static SECRET_KEY_BYTES: [u8; SECRET_KEY_LENGTH] = [
|
|
062, 070, 027, 163, 092, 182, 011, 003, 077, 234, 098, 004, 011, 127, 079, 228, 243, 187,
|
|
150, 073, 201, 137, 076, 022, 085, 251, 152, 002, 241, 042, 072, 054,
|
|
];
|
|
|
|
/// Signature with the above signing_key of a blank message.
|
|
static SIGNATURE_BYTES: [u8; SIGNATURE_LENGTH] = [
|
|
010, 126, 151, 143, 157, 064, 047, 001, 196, 140, 179, 058, 226, 152, 018, 102, 160, 123,
|
|
080, 016, 210, 086, 196, 028, 053, 231, 012, 157, 169, 019, 158, 063, 045, 154, 238, 007,
|
|
053, 185, 227, 229, 079, 108, 213, 080, 124, 252, 084, 167, 216, 085, 134, 144, 129, 149,
|
|
041, 081, 063, 120, 126, 100, 092, 059, 050, 011,
|
|
];
|
|
|
|
#[test]
|
|
fn serialize_deserialize_signature_bincode() {
|
|
let signature: Signature = Signature::from_bytes(&SIGNATURE_BYTES);
|
|
let encoded_signature: Vec<u8> = bincode::serialize(&signature).unwrap();
|
|
let decoded_signature: Signature = bincode::deserialize(&encoded_signature).unwrap();
|
|
|
|
assert_eq!(signature, decoded_signature);
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_deserialize_signature_json() {
|
|
let signature: Signature = Signature::from_bytes(&SIGNATURE_BYTES);
|
|
let encoded_signature = serde_json::to_string(&signature).unwrap();
|
|
let decoded_signature: Signature = serde_json::from_str(&encoded_signature).unwrap();
|
|
|
|
assert_eq!(signature, decoded_signature);
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_deserialize_verifying_key_bincode() {
|
|
let verifying_key: VerifyingKey = VerifyingKey::from_bytes(&PUBLIC_KEY_BYTES).unwrap();
|
|
let encoded_verifying_key: Vec<u8> = bincode::serialize(&verifying_key).unwrap();
|
|
let decoded_verifying_key: VerifyingKey =
|
|
bincode::deserialize(&encoded_verifying_key).unwrap();
|
|
|
|
assert_eq!(
|
|
&PUBLIC_KEY_BYTES[..],
|
|
&encoded_verifying_key[encoded_verifying_key.len() - PUBLIC_KEY_LENGTH..]
|
|
);
|
|
assert_eq!(verifying_key, decoded_verifying_key);
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_deserialize_verifying_key_json() {
|
|
let verifying_key: VerifyingKey = VerifyingKey::from_bytes(&PUBLIC_KEY_BYTES).unwrap();
|
|
let encoded_verifying_key = serde_json::to_string(&verifying_key).unwrap();
|
|
let decoded_verifying_key: VerifyingKey =
|
|
serde_json::from_str(&encoded_verifying_key).unwrap();
|
|
|
|
assert_eq!(verifying_key, decoded_verifying_key);
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_deserialize_signing_key_bincode() {
|
|
let signing_key = SigningKey::from_bytes(&SECRET_KEY_BYTES);
|
|
let encoded_signing_key: Vec<u8> = bincode::serialize(&signing_key).unwrap();
|
|
let decoded_signing_key: SigningKey = bincode::deserialize(&encoded_signing_key).unwrap();
|
|
|
|
for i in 0..SECRET_KEY_LENGTH {
|
|
assert_eq!(SECRET_KEY_BYTES[i], decoded_signing_key.to_bytes()[i]);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_deserialize_signing_key_json() {
|
|
let signing_key = SigningKey::from_bytes(&SECRET_KEY_BYTES);
|
|
let encoded_signing_key = serde_json::to_string(&signing_key).unwrap();
|
|
let decoded_signing_key: SigningKey = serde_json::from_str(&encoded_signing_key).unwrap();
|
|
|
|
for i in 0..SECRET_KEY_LENGTH {
|
|
assert_eq!(SECRET_KEY_BYTES[i], decoded_signing_key.to_bytes()[i]);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_deserialize_signing_key_toml() {
|
|
let demo = Demo {
|
|
signing_key: SigningKey::from_bytes(&SECRET_KEY_BYTES),
|
|
};
|
|
|
|
println!("\n\nWrite to toml");
|
|
let demo_toml = toml::to_string(&demo).unwrap();
|
|
println!("{}", demo_toml);
|
|
let demo_toml_rebuild: Result<Demo, _> = toml::from_str(&demo_toml);
|
|
println!("{:?}", demo_toml_rebuild);
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_verifying_key_size() {
|
|
let verifying_key: VerifyingKey = VerifyingKey::from_bytes(&PUBLIC_KEY_BYTES).unwrap();
|
|
assert_eq!(
|
|
bincode::serialized_size(&verifying_key).unwrap() as usize,
|
|
BINCODE_INT_LENGTH + PUBLIC_KEY_LENGTH
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_signature_size() {
|
|
let signature: Signature = Signature::from_bytes(&SIGNATURE_BYTES);
|
|
assert_eq!(
|
|
bincode::serialized_size(&signature).unwrap() as usize,
|
|
SIGNATURE_LENGTH
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn serialize_signing_key_size() {
|
|
let signing_key = SigningKey::from_bytes(&SECRET_KEY_BYTES);
|
|
assert_eq!(
|
|
bincode::serialized_size(&signing_key).unwrap() as usize,
|
|
BINCODE_INT_LENGTH + SECRET_KEY_LENGTH
|
|
);
|
|
}
|
|
}
|