Files
ed25519-dalek/tests/ed25519.rs
Tony Arcieri db4e9ddf02 Bump ed25519 crate dependency to v2.1
The original v2.0.0 release has been yanked.

This release includes a different infallible parsing API which can be
used to eliminate some usages of `unwrap()`.
2023-01-21 15:19:20 -07:00

601 lines
22 KiB
Rust

// -*- mode: rust; -*-
//
// This file is part of ed25519-dalek.
// Copyright (c) 2017-2019 isis lovecruft
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
//! Integration tests for ed25519-dalek.
use curve25519_dalek;
use ed25519_dalek::*;
use hex::FromHex;
#[cfg(feature = "digest")]
use hex_literal::hex;
#[cfg(test)]
mod vectors {
use super::*;
use curve25519_dalek::{
constants::ED25519_BASEPOINT_POINT,
edwards::{CompressedEdwardsY, EdwardsPoint},
scalar::Scalar,
traits::IsIdentity,
};
use sha2::{digest::Digest, Sha512};
use std::{
convert::TryFrom,
fs::File,
io::{BufRead, BufReader},
ops::Neg,
};
// TESTVECTORS is taken from sign.input.gz in agl's ed25519 Golang
// package. It is a selection of test cases from
// http://ed25519.cr.yp.to/python/sign.input
#[test]
fn against_reference_implementation() {
// TestGolden
let mut line: String;
let mut lineno: usize = 0;
let f = File::open("TESTVECTORS");
if f.is_err() {
println!(
"This test is only available when the code has been cloned \
from the git repository, since the TESTVECTORS file is large \
and is therefore not included within the distributed crate."
);
panic!();
}
let file = BufReader::new(f.unwrap());
for l in file.lines() {
lineno += 1;
line = l.unwrap();
let parts: Vec<&str> = line.split(':').collect();
assert_eq!(parts.len(), 5, "wrong number of fields in line {}", lineno);
let sec_bytes: Vec<u8> = FromHex::from_hex(&parts[0]).unwrap();
let pub_bytes: Vec<u8> = FromHex::from_hex(&parts[1]).unwrap();
let msg_bytes: Vec<u8> = FromHex::from_hex(&parts[2]).unwrap();
let sig_bytes: Vec<u8> = FromHex::from_hex(&parts[3]).unwrap();
let sec_bytes = &sec_bytes[..SECRET_KEY_LENGTH].try_into().unwrap();
let pub_bytes = &pub_bytes[..PUBLIC_KEY_LENGTH].try_into().unwrap();
let signing_key = SigningKey::from_bytes(sec_bytes);
let expected_verifying_key = VerifyingKey::from_bytes(pub_bytes).unwrap();
assert_eq!(expected_verifying_key, signing_key.verifying_key());
// The signatures in the test vectors also include the message
// at the end, but we just want R and S.
let sig1: Signature = Signature::try_from(&sig_bytes[..64]).unwrap();
let sig2: Signature = signing_key.sign(&msg_bytes);
assert!(sig1 == sig2, "Signature bytes not equal on line {}", lineno);
assert!(
signing_key.verify(&msg_bytes, &sig2).is_ok(),
"Signature verification failed on line {}",
lineno
);
assert!(
expected_verifying_key
.verify_strict(&msg_bytes, &sig2)
.is_ok(),
"Signature strict verification failed on line {}",
lineno
);
}
}
// From https://tools.ietf.org/html/rfc8032#section-7.3
#[cfg(feature = "digest")]
#[test]
fn ed25519ph_rf8032_test_vector_prehash() {
let sec_bytes = hex!("833fe62409237b9d62ec77587520911e9a759cec1d19755b7da901b96dca3d42");
let pub_bytes = hex!("ec172b93ad5e563bf4932c70e1245034c35467ef2efd4d64ebf819683467e2bf");
let msg_bytes = hex!("616263");
let sig_bytes = hex!("98a70222f0b8121aa9d30f813d683f809e462b469c7ff87639499bb94e6dae4131f85042463c2a355a2003d062adf5aaa10b8c61e636062aaad11c2a26083406");
let signing_key = SigningKey::from_bytes(&sec_bytes);
let expected_verifying_key = VerifyingKey::from_bytes(&pub_bytes).unwrap();
assert_eq!(expected_verifying_key, signing_key.verifying_key());
let sig1 = Signature::try_from(&sig_bytes[..]).unwrap();
let mut prehash_for_signing = Sha512::default();
let mut prehash_for_verifying = Sha512::default();
prehash_for_signing.update(&msg_bytes[..]);
prehash_for_verifying.update(&msg_bytes[..]);
let sig2: Signature = signing_key
.sign_prehashed(prehash_for_signing, None)
.unwrap();
assert!(
sig1 == sig2,
"Original signature from test vectors doesn't equal signature produced:\
\noriginal:\n{:?}\nproduced:\n{:?}",
sig1,
sig2
);
assert!(
signing_key
.verify_prehashed(prehash_for_verifying.clone(), None, &sig2)
.is_ok(),
"Could not verify ed25519ph signature!"
);
assert!(
expected_verifying_key
.verify_prehashed_strict(prehash_for_verifying, None, &sig2)
.is_ok(),
"Could not strict-verify ed25519ph signature!"
);
}
//
// The remaining items in this mod are for the repudiation tests
//
// Taken from curve25519_dalek::constants::EIGHT_TORSION[4]
const EIGHT_TORSION_4: [u8; 32] = [
236, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 127,
];
// Computes the prehashed or non-prehashed challenge, depending on whether context is given
fn compute_challenge(
message: &[u8],
pub_key: &EdwardsPoint,
signature_r: &EdwardsPoint,
context: Option<&[u8]>,
) -> Scalar {
let mut h = Sha512::default();
if let Some(c) = context {
h.update(b"SigEd25519 no Ed25519 collisions");
h.update(&[1]);
h.update(&[c.len() as u8]);
h.update(c);
}
h.update(&signature_r.compress().as_bytes());
h.update(&pub_key.compress().as_bytes()[..]);
h.update(&message);
Scalar::from_hash(h)
}
fn serialize_signature(r: &EdwardsPoint, s: &Scalar) -> Vec<u8> {
[&r.compress().as_bytes()[..], &s.as_bytes()[..]].concat()
}
const WEAK_PUBKEY: CompressedEdwardsY = CompressedEdwardsY(EIGHT_TORSION_4);
// Pick a random Scalar
fn non_null_scalar() -> Scalar {
let mut rng = rand::rngs::OsRng;
let mut s_candidate = Scalar::random(&mut rng);
while s_candidate == Scalar::ZERO {
s_candidate = Scalar::random(&mut rng);
}
s_candidate
}
fn pick_r(s: Scalar) -> EdwardsPoint {
let r0 = s * ED25519_BASEPOINT_POINT;
// Pick a torsion point of order 2
r0 + WEAK_PUBKEY.decompress().unwrap().neg()
}
// Tests that verify_strict() rejects small-order pubkeys. We test this by explicitly
// constructing a pubkey-signature pair that verifies with respect to two distinct messages.
// This should be accepted by verify(), but rejected by verify_strict().
#[test]
fn repudiation() {
let message1 = b"Send 100 USD to Alice";
let message2 = b"Send 100000 USD to Alice";
let mut s: Scalar = non_null_scalar();
let pubkey = WEAK_PUBKEY.decompress().unwrap();
let mut r = pick_r(s);
// Find an R such that
// H(R || A || M₁) · A == A == H(R || A || M₂) · A
// This happens with high probability when A is low order.
while !(pubkey.neg() + compute_challenge(message1, &pubkey, &r, None) * pubkey)
.is_identity()
|| !(pubkey.neg() + compute_challenge(message2, &pubkey, &r, None) * pubkey)
.is_identity()
{
// We pick an s and let R = sB - A where B is the basepoint
s = non_null_scalar();
r = pick_r(s);
}
// At this point, both verification equations hold:
// sB = R + H(R || A || M₁) · A
// = R + H(R || A || M₂) · A
// Check that this is true
let signature = serialize_signature(&r, &s);
let vk = VerifyingKey::from_bytes(&pubkey.compress().as_bytes()).unwrap();
let sig = Signature::try_from(&signature[..]).unwrap();
assert!(vk.verify(message1, &sig).is_ok());
assert!(vk.verify(message2, &sig).is_ok());
// Now check that the sigs fail under verify_strict. This is because verify_strict rejects
// small order pubkeys.
assert!(vk.verify_strict(message1, &sig).is_err());
assert!(vk.verify_strict(message2, &sig).is_err());
}
// Identical to repudiation() above, but testing verify_prehashed against
// verify_prehashed_strict. See comments above for a description of what's happening.
#[cfg(feature = "digest")]
#[test]
fn repudiation_prehash() {
let message1 = Sha512::new().chain_update(b"Send 100 USD to Alice");
let message2 = Sha512::new().chain_update(b"Send 100000 USD to Alice");
let message1_bytes = message1.clone().finalize();
let message2_bytes = message2.clone().finalize();
let mut s: Scalar = non_null_scalar();
let pubkey = WEAK_PUBKEY.decompress().unwrap();
let mut r = pick_r(s);
let context_str = Some(&b"edtest"[..]);
while !(pubkey.neg()
+ compute_challenge(&message1_bytes, &pubkey, &r, context_str) * pubkey)
.is_identity()
|| !(pubkey.neg()
+ compute_challenge(&message2_bytes, &pubkey, &r, context_str) * pubkey)
.is_identity()
{
s = non_null_scalar();
r = pick_r(s);
}
// Check that verify_prehashed succeeds on both sigs
let signature = serialize_signature(&r, &s);
let vk = VerifyingKey::from_bytes(&pubkey.compress().as_bytes()).unwrap();
let sig = Signature::try_from(&signature[..]).unwrap();
assert!(vk
.verify_prehashed(message1.clone(), context_str, &sig)
.is_ok());
assert!(vk
.verify_prehashed(message2.clone(), context_str, &sig)
.is_ok());
// Check that verify_prehashed_strict fails on both sigs
assert!(vk
.verify_prehashed_strict(message1.clone(), context_str, &sig)
.is_err());
assert!(vk
.verify_prehashed_strict(message2.clone(), context_str, &sig)
.is_err());
}
}
#[cfg(feature = "rand_core")]
mod integrations {
use super::*;
use rand::rngs::OsRng;
#[cfg(feature = "digest")]
use sha2::Sha512;
use std::collections::HashMap;
#[test]
fn sign_verify() {
// TestSignVerify
let signing_key: SigningKey;
let good_sig: Signature;
let bad_sig: Signature;
let good: &[u8] = "test message".as_bytes();
let bad: &[u8] = "wrong message".as_bytes();
let mut csprng = OsRng;
signing_key = SigningKey::generate(&mut csprng);
let verifying_key = signing_key.verifying_key();
good_sig = signing_key.sign(&good);
bad_sig = signing_key.sign(&bad);
assert!(
signing_key.verify(&good, &good_sig).is_ok(),
"Verification of a valid signature failed!"
);
assert!(
verifying_key.verify_strict(&good, &good_sig).is_ok(),
"Strict verification of a valid signature failed!"
);
assert!(
signing_key.verify(&good, &bad_sig).is_err(),
"Verification of a signature on a different message passed!"
);
assert!(
verifying_key.verify_strict(&good, &bad_sig).is_err(),
"Strict verification of a signature on a different message passed!"
);
assert!(
signing_key.verify(&bad, &good_sig).is_err(),
"Verification of a signature on a different message passed!"
);
assert!(
verifying_key.verify_strict(&bad, &good_sig).is_err(),
"Strict verification of a signature on a different message passed!"
);
}
#[cfg(feature = "digest")]
#[test]
fn ed25519ph_sign_verify() {
let signing_key: SigningKey;
let good_sig: Signature;
let bad_sig: Signature;
let good: &[u8] = b"test message";
let bad: &[u8] = b"wrong message";
let mut csprng = OsRng;
// ugh… there's no `impl Copy for Sha512`… i hope we can all agree these are the same hashes
let mut prehashed_good1: Sha512 = Sha512::default();
prehashed_good1.update(good);
let mut prehashed_good2: Sha512 = Sha512::default();
prehashed_good2.update(good);
let mut prehashed_good3: Sha512 = Sha512::default();
prehashed_good3.update(good);
let mut prehashed_bad1: Sha512 = Sha512::default();
prehashed_bad1.update(bad);
let mut prehashed_bad2: Sha512 = Sha512::default();
prehashed_bad2.update(bad);
let context: &[u8] = b"testing testing 1 2 3";
signing_key = SigningKey::generate(&mut csprng);
let verifying_key = signing_key.verifying_key();
good_sig = signing_key
.sign_prehashed(prehashed_good1, Some(context))
.unwrap();
bad_sig = signing_key
.sign_prehashed(prehashed_bad1, Some(context))
.unwrap();
assert!(
signing_key
.verify_prehashed(prehashed_good2.clone(), Some(context), &good_sig)
.is_ok(),
"Verification of a valid signature failed!"
);
assert!(
verifying_key
.verify_prehashed_strict(prehashed_good2, Some(context), &good_sig)
.is_ok(),
"Strict verification of a valid signature failed!"
);
assert!(
signing_key
.verify_prehashed(prehashed_good3.clone(), Some(context), &bad_sig)
.is_err(),
"Verification of a signature on a different message passed!"
);
assert!(
verifying_key
.verify_prehashed_strict(prehashed_good3, Some(context), &bad_sig)
.is_err(),
"Strict verification of a signature on a different message passed!"
);
assert!(
signing_key
.verify_prehashed(prehashed_bad2.clone(), Some(context), &good_sig)
.is_err(),
"Verification of a signature on a different message passed!"
);
assert!(
verifying_key
.verify_prehashed_strict(prehashed_bad2, Some(context), &good_sig)
.is_err(),
"Strict verification of a signature on a different message passed!"
);
}
#[cfg(feature = "batch")]
#[test]
fn verify_batch_seven_signatures() {
let messages: [&[u8]; 7] = [
b"Watch closely everyone, I'm going to show you how to kill a god.",
b"I'm not a cryptographer I just encrypt a lot.",
b"Still not a cryptographer.",
b"This is a test of the tsunami alert system. This is only a test.",
b"Fuck dumbin' it down, spit ice, skip jewellery: Molotov cocktails on me like accessories.",
b"Hey, I never cared about your bucks, so if I run up with a mask on, probably got a gas can too.",
b"And I'm not here to fill 'er up. Nope, we came to riot, here to incite, we don't want any of your stuff.", ];
let mut csprng = OsRng;
let mut signing_keys: Vec<SigningKey> = Vec::new();
let mut signatures: Vec<Signature> = Vec::new();
for i in 0..messages.len() {
let signing_key: SigningKey = SigningKey::generate(&mut csprng);
signatures.push(signing_key.sign(&messages[i]));
signing_keys.push(signing_key);
}
let verifying_keys: Vec<VerifyingKey> =
signing_keys.iter().map(|key| key.verifying_key()).collect();
let result = verify_batch(&messages, &signatures, &verifying_keys);
assert!(result.is_ok());
}
#[test]
fn public_key_hash_trait_check() {
let mut csprng = OsRng {};
let secret: SigningKey = SigningKey::generate(&mut csprng);
let public_from_secret: VerifyingKey = (&secret).into();
let mut m = HashMap::new();
m.insert(public_from_secret, "Example_Public_Key");
m.insert(public_from_secret, "Updated Value");
let (k, v) = m.get_key_value(&public_from_secret).unwrap();
assert_eq!(k, &public_from_secret);
assert_eq!(v.clone(), "Updated Value");
assert_eq!(m.len(), 1usize);
let second_secret: SigningKey = SigningKey::generate(&mut csprng);
let public_from_second_secret: VerifyingKey = (&second_secret).into();
assert_ne!(public_from_secret, public_from_second_secret);
m.insert(public_from_second_secret, "Second public key");
let (k, v) = m.get_key_value(&public_from_second_secret).unwrap();
assert_eq!(k, &public_from_second_secret);
assert_eq!(v.clone(), "Second public key");
assert_eq!(m.len(), 2usize);
}
}
#[cfg(all(test, feature = "serde"))]
#[derive(Debug, serde::Serialize, serde::Deserialize)]
#[serde(crate = "serde")]
struct Demo {
signing_key: SigningKey,
}
#[cfg(all(test, feature = "serde"))]
mod serialisation {
use super::*;
// The size for bincode to serialize the length of a byte array.
static BINCODE_INT_LENGTH: usize = 8;
static PUBLIC_KEY_BYTES: [u8; PUBLIC_KEY_LENGTH] = [
130, 039, 155, 015, 062, 076, 188, 063, 124, 122, 026, 251, 233, 253, 225, 220, 014, 041,
166, 120, 108, 035, 254, 077, 160, 083, 172, 058, 219, 042, 086, 120,
];
static SECRET_KEY_BYTES: [u8; SECRET_KEY_LENGTH] = [
062, 070, 027, 163, 092, 182, 011, 003, 077, 234, 098, 004, 011, 127, 079, 228, 243, 187,
150, 073, 201, 137, 076, 022, 085, 251, 152, 002, 241, 042, 072, 054,
];
/// Signature with the above signing_key of a blank message.
static SIGNATURE_BYTES: [u8; SIGNATURE_LENGTH] = [
010, 126, 151, 143, 157, 064, 047, 001, 196, 140, 179, 058, 226, 152, 018, 102, 160, 123,
080, 016, 210, 086, 196, 028, 053, 231, 012, 157, 169, 019, 158, 063, 045, 154, 238, 007,
053, 185, 227, 229, 079, 108, 213, 080, 124, 252, 084, 167, 216, 085, 134, 144, 129, 149,
041, 081, 063, 120, 126, 100, 092, 059, 050, 011,
];
#[test]
fn serialize_deserialize_signature_bincode() {
let signature: Signature = Signature::from_bytes(&SIGNATURE_BYTES);
let encoded_signature: Vec<u8> = bincode::serialize(&signature).unwrap();
let decoded_signature: Signature = bincode::deserialize(&encoded_signature).unwrap();
assert_eq!(signature, decoded_signature);
}
#[test]
fn serialize_deserialize_signature_json() {
let signature: Signature = Signature::from_bytes(&SIGNATURE_BYTES);
let encoded_signature = serde_json::to_string(&signature).unwrap();
let decoded_signature: Signature = serde_json::from_str(&encoded_signature).unwrap();
assert_eq!(signature, decoded_signature);
}
#[test]
fn serialize_deserialize_verifying_key_bincode() {
let verifying_key: VerifyingKey = VerifyingKey::from_bytes(&PUBLIC_KEY_BYTES).unwrap();
let encoded_verifying_key: Vec<u8> = bincode::serialize(&verifying_key).unwrap();
let decoded_verifying_key: VerifyingKey =
bincode::deserialize(&encoded_verifying_key).unwrap();
assert_eq!(
&PUBLIC_KEY_BYTES[..],
&encoded_verifying_key[encoded_verifying_key.len() - PUBLIC_KEY_LENGTH..]
);
assert_eq!(verifying_key, decoded_verifying_key);
}
#[test]
fn serialize_deserialize_verifying_key_json() {
let verifying_key: VerifyingKey = VerifyingKey::from_bytes(&PUBLIC_KEY_BYTES).unwrap();
let encoded_verifying_key = serde_json::to_string(&verifying_key).unwrap();
let decoded_verifying_key: VerifyingKey =
serde_json::from_str(&encoded_verifying_key).unwrap();
assert_eq!(verifying_key, decoded_verifying_key);
}
#[test]
fn serialize_deserialize_signing_key_bincode() {
let signing_key = SigningKey::from_bytes(&SECRET_KEY_BYTES);
let encoded_signing_key: Vec<u8> = bincode::serialize(&signing_key).unwrap();
let decoded_signing_key: SigningKey = bincode::deserialize(&encoded_signing_key).unwrap();
for i in 0..SECRET_KEY_LENGTH {
assert_eq!(SECRET_KEY_BYTES[i], decoded_signing_key.to_bytes()[i]);
}
}
#[test]
fn serialize_deserialize_signing_key_json() {
let signing_key = SigningKey::from_bytes(&SECRET_KEY_BYTES);
let encoded_signing_key = serde_json::to_string(&signing_key).unwrap();
let decoded_signing_key: SigningKey = serde_json::from_str(&encoded_signing_key).unwrap();
for i in 0..SECRET_KEY_LENGTH {
assert_eq!(SECRET_KEY_BYTES[i], decoded_signing_key.to_bytes()[i]);
}
}
#[test]
fn serialize_deserialize_signing_key_toml() {
let demo = Demo {
signing_key: SigningKey::from_bytes(&SECRET_KEY_BYTES),
};
println!("\n\nWrite to toml");
let demo_toml = toml::to_string(&demo).unwrap();
println!("{}", demo_toml);
let demo_toml_rebuild: Result<Demo, _> = toml::from_str(&demo_toml);
println!("{:?}", demo_toml_rebuild);
}
#[test]
fn serialize_verifying_key_size() {
let verifying_key: VerifyingKey = VerifyingKey::from_bytes(&PUBLIC_KEY_BYTES).unwrap();
assert_eq!(
bincode::serialized_size(&verifying_key).unwrap() as usize,
BINCODE_INT_LENGTH + PUBLIC_KEY_LENGTH
);
}
#[test]
fn serialize_signature_size() {
let signature: Signature = Signature::from_bytes(&SIGNATURE_BYTES);
assert_eq!(
bincode::serialized_size(&signature).unwrap() as usize,
SIGNATURE_LENGTH
);
}
#[test]
fn serialize_signing_key_size() {
let signing_key = SigningKey::from_bytes(&SECRET_KEY_BYTES);
assert_eq!(
bincode::serialized_size(&signing_key).unwrap() as usize,
BINCODE_INT_LENGTH + SECRET_KEY_LENGTH
);
}
}